Tissue Characterisation In Spectral Ct Data

but.event.date25.04.2019cs
but.event.titleStudent EEICT 2019cs
dc.contributor.authorPoláková, Veronika
dc.date.accessioned2020-04-16T07:19:26Z
dc.date.available2020-04-16T07:19:26Z
dc.date.issued2019cs
dc.description.abstractThis article deals with tissue characterisation in virtual monoenergetic images (VMI). It presents that with growing energy of VMI the median of CT number increases or decreases with different steepness depending on a type of tissue. As a consequence, some VMI enable better soft tissue distinction and therefore their better classification. To determine which VMI are best suited, Cohen d was used. After that, Random Forest classification algorithm was applied to these images. If median of pixels is considered in addition to pixels themselves, the tissues can be clasiffied correctly.en
dc.formattextcs
dc.format.extent46-49cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationProceedings of the 25st Conference STUDENT EEICT 2019. s. 46-49. ISBN 978-80-214-5735-5cs
dc.identifier.isbn978-80-214-5735-5
dc.identifier.urihttp://hdl.handle.net/11012/186614
dc.language.isocscs
dc.publisherVysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.relation.ispartofProceedings of the 25st Conference STUDENT EEICT 2019en
dc.relation.urihttp://www.feec.vutbr.cz/EEICT/cs
dc.rights© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.rights.accessopenAccessen
dc.subjectspectral CTen
dc.subjectimage segmentationen
dc.subjectdescriptive statisticsen
dc.subjectsupervised machine learningen
dc.titleTissue Characterisation In Spectral Ct Dataen
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentFakulta elektrotechniky a komunikačních technologiícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
46_eeict2019.pdf
Size:
690.69 KB
Format:
Adobe Portable Document Format
Description: