Determining Johnson-Cook Constitutive Equation for Low-Carbon Steel via Taylor Anvil Test

dc.contributor.authorKunčická, Lenkacs
dc.contributor.authorJopek, Miroslavcs
dc.contributor.authorKocich, Radimcs
dc.contributor.authorDvořák, Karelcs
dc.coverage.issue17cs
dc.coverage.volume14cs
dc.date.issued2021-08-25cs
dc.description.abstractTristal steel is low-carbon construction-type steel widely used in the automotive industry, e.g., for braking components. Given the contemporary demands on the high-volume production of such components, these are typically fabricated using automatic sequential machines, which can produce components at strain rates up to 103 s1. For this reason, characterising the behaviour of the used material at high strain rates is of the utmost importance for successful industrial production. This study focuses on the characterisation of the behaviour of low-carbon steel via developing its material model using the Johnson-Cook constitutive equation. At first, the Taylor anvil test is performed. Subsequently, the acquired data together with the results of observations of structures and properties of the tested specimens are used to fill the necessary parameters into the equation. Finally, the developed equation is used to numerically simulate the Taylor anvil test and the predicted data is correlated with the experimentally acquired one. The results showed a satisfactory correlation of the experimental and predicted data; the deformed specimen region featured increased occurrence of dislocations, as well as higher hardness (its original value of 88 HV increased to more than 200 HV after testing), which corresponded to the predicted distributions of effective imposed strain and compressive stress.en
dc.description.abstractTristal steel is low-carbon construction-type steel widely used in the automotive industry, e.g., for braking components. Given the contemporary demands on the high-volume production of such components, these are typically fabricated using automatic sequential machines, which can produce components at strain rates up to 103 s1. For this reason, characterising the behaviour of the used material at high strain rates is of the utmost importance for successful industrial production. This study focuses on the characterisation of the behaviour of low-carbon steel via developing its material model using the Johnson-Cook constitutive equation. At first, the Taylor anvil test is performed. Subsequently, the acquired data together with the results of observations of structures and properties of the tested specimens are used to fill the necessary parameters into the equation. Finally, the developed equation is used to numerically simulate the Taylor anvil test and the predicted data is correlated with the experimentally acquired one. The results showed a satisfactory correlation of the experimental and predicted data; the deformed specimen region featured increased occurrence of dislocations, as well as higher hardness (its original value of 88 HV increased to more than 200 HV after testing), which corresponded to the predicted distributions of effective imposed strain and compressive stress.en
dc.formattextcs
dc.format.extent1-15cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationMaterials. 2021, vol. 14, issue 17, p. 1-15.en
dc.identifier.doi10.3390/ma14174821cs
dc.identifier.issn1996-1944cs
dc.identifier.orcid0000-0002-4054-7049cs
dc.identifier.orcid0000-0001-5399-3059cs
dc.identifier.orcid0000-0003-2111-3357cs
dc.identifier.other172308cs
dc.identifier.researcheridC-6217-2019cs
dc.identifier.researcheridABB-4100-2021cs
dc.identifier.researcheridF-9223-2019cs
dc.identifier.researcheridK-2385-2014cs
dc.identifier.scopus6504024580cs
dc.identifier.scopus54992801300cs
dc.identifier.urihttp://hdl.handle.net/11012/201477
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofMaterialscs
dc.relation.urihttps://www.mdpi.com/1996-1944/14/17/4821cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1996-1944/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectlow-carbon steelen
dc.subjectTaylor anvil testen
dc.subjectJohnson–Cooken
dc.subjectconstitutive equationen
dc.subjecthigh strain rateen
dc.subjectlow-carbon steel
dc.subjectTaylor anvil test
dc.subjectJohnson–Cook
dc.subjectconstitutive equation
dc.subjecthigh strain rate
dc.titleDetermining Johnson-Cook Constitutive Equation for Low-Carbon Steel via Taylor Anvil Testen
dc.title.alternativeDetermining Johnson-Cook Constitutive Equation for Low-Carbon Steel via Taylor Anvil Testen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-172308en
sync.item.dbtypeVAVen
sync.item.insts2025.10.14 14:45:49en
sync.item.modts2025.10.14 10:42:18en
thesis.grantorVysoké učení technické v Brně. Fakulta stavební. Ústav technologie stavebních hmot a dílcůcs
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav strojírenské technologiecs
thesis.grantorVysoké učení technické v Brně. . Vysoká škola báňská - Technická univerzita Ostravacs
thesis.grantorVysoké učení technické v Brně. . Ústav fyziky materiálů AV ČRcs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
materials1404821v2.pdf
Size:
5.86 MB
Format:
Adobe Portable Document Format
Description:
materials1404821v2.pdf