Implementation of a deep learning model for vertebral segmentation in CT data
Loading...
Date
2023
Authors
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Altmetrics
Abstract
This paper deals with the problem of vertebral segmentationin CT data with the use of deep learning approaches.Automatic segmentation of vertebrae is a very complex issueand would simplify the work of radiologists and doctors. Thepaper is focused on one of the models published and submittedto the Large Scale Vertebrae Segmentation Challenge (VerSe) in2020 from C. Payer et al. – Improving Coarse to Fine VertebraeLocalisation and Segmentation with SpatialConfiguration-Netand U-Net and its implementation and modification. The modelis evaluated on the corresponding public and hidden dataset. Itsmodification shows an improvement of the results in comparisonwith the published results, a mean Dice score improved from0.9165 to 0.9302 on the public dataset and from 0.8971 to 0.9264on the hidden dataset.
Description
Citation
Proceedings II of the 29st Conference STUDENT EEICT 2023: Selected papers. s. 41-44. ISBN 978-80-214-6154-3
https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_2_v2.pdf
https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_2_v2.pdf
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií