Implementation of a deep learning model for vertebral segmentation in CT data

Loading...
Thumbnail Image

Date

Authors

Blažkova, Lenka
Nohel, Michal

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií

ORCID

Altmetrics

Abstract

This paper deals with the problem of vertebral segmentationin CT data with the use of deep learning approaches.Automatic segmentation of vertebrae is a very complex issueand would simplify the work of radiologists and doctors. Thepaper is focused on one of the models published and submittedto the Large Scale Vertebrae Segmentation Challenge (VerSe) in2020 from C. Payer et al. – Improving Coarse to Fine VertebraeLocalisation and Segmentation with SpatialConfiguration-Netand U-Net and its implementation and modification. The modelis evaluated on the corresponding public and hidden dataset. Itsmodification shows an improvement of the results in comparisonwith the published results, a mean Dice score improved from0.9165 to 0.9302 on the public dataset and from 0.8971 to 0.9264on the hidden dataset.

Description

Citation

Proceedings II of the 29st Conference STUDENT EEICT 2023: Selected papers. s. 41-44. ISBN 978-80-214-6154-3
https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_2_v2.pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Citace PRO