Erosion development in AISI 316L stainless steel under pulsating water jet treatment

dc.contributor.authorHloch, Sergejcs
dc.contributor.authorPoloprudský, Jakubcs
dc.contributor.authorŠiška, Filipcs
dc.contributor.authorBabinský, Tomášcs
dc.contributor.authorNAGH, Akashcs
dc.contributor.authorChlupová, Alicecs
dc.contributor.authorKruml, Tomášcs
dc.coverage.issue1cs
dc.coverage.volume50cs
dc.date.accessioned2025-06-19T10:58:40Z
dc.date.available2025-06-19T10:58:40Z
dc.date.issued2024-01-26cs
dc.description.abstractErosion of solids by liquid droplets is a phenomenon which is a compromise between mechanical properties of the material and droplet hydrodynamic parameters. While a number of studies deal with the deformation of drops, the deformation evolution inside the material has not yet been revealed, mainly from the point of view of the time action of the impinging drops The mechanical response of AISI 316L was investigated under gradually increasing numbers of impingements of liquid droplets, with a droplet volume of Vd approximately equal to 0.9 mm3, generated by an ultrasonic pulsating water jet with the frequency f = 40 kHz from 1 to 20 s. The surface roughness and the wear rates were determined using a laser profilometer. The cross-section of the selected samples was subjected to microhardness measurement with a load of 0.150 N in a 2D grid, which included the entire perimeter of the deformed area. The minimal microhardness measurement grid under the groove had dimensions of 15 x 15 indents, equal to an area of approximately 450 x 600 mu m. A maximum hardness increase was observed at the lowest measured depth of 30 mu m. An increase in hardness was observed at 300 mu m below the surface. The hardening in the deeper subsurface area was most likely caused by shear stress. This shows the high degree of similitude between the solid and liquid droplet impingements. The results indicate that the currently accepted theory on the development of erosion over time has shortcomings, as demonstrated in this work by the ratio between the utilised droplet diameter and the grain size of the material.en
dc.formattextcs
dc.format.extent1-14cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationEngineering Science and Technology, an International Journal. 2024, vol. 50, issue 1, p. 1-14.en
dc.identifier.doi10.1016/j.jestch.2024.101630cs
dc.identifier.issn2215-0986cs
dc.identifier.orcid0000-0001-5109-587Xcs
dc.identifier.orcid0000-0002-1581-8054cs
dc.identifier.other197249cs
dc.identifier.researcheridR-9635-2019cs
dc.identifier.scopus57205285298cs
dc.identifier.urihttps://hdl.handle.net/11012/254274
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofEngineering Science and Technology, an International Journalcs
dc.relation.urihttps://doi.org/10.1016/j.jestch.2024.101630cs
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2215-0986/cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.subjectErosionen
dc.subjectWearen
dc.subjectPulsating water jeten
dc.subjectAISI 316Len
dc.subjectStainless steelen
dc.subjectSurface integrityen
dc.subjectSubsurface hardeningen
dc.subjectMicrohardnessen
dc.titleErosion development in AISI 316L stainless steel under pulsating water jet treatmenten
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-197249en
sync.item.dbtypeVAVen
sync.item.insts2025.06.19 12:58:40en
sync.item.modts2025.06.19 12:33:28en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav materiálových věd a inženýrstvícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1s2.0S2215098624000168main.pdf
Size:
20.74 MB
Format:
Adobe Portable Document Format
Description:
file 1s2.0S2215098624000168main.pdf