Bounded solutions to systems of fractional discrete equations
dc.contributor.author | DiblĂk, Josef | cs |
dc.coverage.issue | 1 | cs |
dc.coverage.volume | 11 | cs |
dc.date.accessioned | 2022-07-27T14:53:12Z | |
dc.date.available | 2022-07-27T14:53:12Z | |
dc.date.issued | 2022-07-19 | cs |
dc.description.abstract | The article is concerned with systems of fractional discrete equations Delta(alpha)x(n + 1) = F-n(n, x(n), x(n - 1), ..., x(n(0))), n = n(0), n(0) + 1, ..., where n(0) is an element of Z , n is an independent variable, Delta(alpha) is an alpha-order fractional difference, alpha is an element of R, F-n : {n} x Rn-n0+1 -> R-s, S >= 1 is a fixed integer, and x : {n(0), n(0) + 1, ...} -> R-s is a dependent (unknown) variable. A retract principle is used to prove the existence of solutions with graphs remaining in a given domain for every n >= n(0), which then serves as a basis for further proving the existence of bounded solutions to a linear nonhomogeneous system of discrete equations Delta(alpha)x(n + 1) = A(n)x(n) + delta(n), n = n(0), n(0) + 1, ..., where A(n) is a square matrix and delta(n) is a vector function. Illustrative examples accompany the statements derived, possible generalizations are discussed, and open problems for future research are formulated as well. | en |
dc.format | text | cs |
dc.format.extent | 1614-1630 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | Advances in Nonlinear Analysis. 2022, vol. 11, issue 1, p. 1614-1630. | en |
dc.identifier.doi | 10.1515/anona-2022-0260 | cs |
dc.identifier.issn | 2191-950X | cs |
dc.identifier.other | 178596 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/208201 | |
dc.language.iso | en | cs |
dc.publisher | De Gruyter | cs |
dc.relation.ispartof | Advances in Nonlinear Analysis | cs |
dc.relation.uri | https://www.degruyter.com/document/doi/10.1515/anona-2022-0260/html | cs |
dc.rights | Creative Commons Attribution 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/2191-950X/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | Fractional discrete difference | en |
dc.subject | asymptotic behavior | en |
dc.subject | system of fractional discrete equations | en |
dc.subject | estimates of solutions | en |
dc.title | Bounded solutions to systems of fractional discrete equations | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-178596 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2022.08.21 00:54:34 | en |
sync.item.modts | 2022.08.21 00:15:08 | en |
thesis.grantor | Vysoké učenà technické v Brně. Středoevropský technologický institut VUT. Kybernetika a robotika | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 10.1515_anona20220260.pdf
- Size:
- 2.71 MB
- Format:
- Adobe Portable Document Format
- Description:
- 10.1515_anona20220260.pdf