Obstacle Avoidance in UAVs: Using a Bug-Inspired Algorithm and Neural Network-Based RGB Camera Collision Prediction

Loading...
Thumbnail Image

Date

Authors

Raichl, Petr
Marcoň, Petr
Janoušek, Jiří

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií

ORCID

Abstract

Unmanned Aerial Vehicles (UAVs) are increasingly deployed in complex environments for various applications, necessitating advanced obstacle avoidance capabilities to ensure safety and mission success. Inspired by the simplicity and effectiveness of biological navigation strategies, this study introduces a novel approach to UAV obstacle avoidance, leveraging the principles of the bug algorithm combined with the predictive power of neural networks. We propose a hybrid model that integrates a lightweight neural network to predict potential collisions in real-time. Our methodology employs a two-stage process: first, the neural network assesses the immediate risk of collision; second, the bug algorithm-inspired decision-making process determines the UAV’s maneuvering actions to navigate without crashing to obstacles. The approach was tested both in simulation and real outdoor experiments.

Description

Citation

Proceedings I of the 30st Conference STUDENT EEICT 2024: General papers. s. 327-331. ISBN 978-80-214-6231-1
https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2024_sbornik_1.pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

DOI

Endorsement

Review

Supplemented By

Referenced By

Citace PRO