Liquid dispersion in inner cavity of rotating packed bed

dc.contributor.authorHájek, Jiřícs
dc.contributor.authorMalý, Milancs
dc.contributor.authorHájek, Ondřejcs
dc.contributor.authorCejpek, Ondřejcs
dc.contributor.authorRapta, Patrikcs
dc.contributor.authorJícha, Miroslavcs
dc.coverage.volume299cs
dc.date.accessioned2025-02-03T14:46:59Z
dc.date.available2025-02-03T14:46:59Z
dc.date.issued2024-07-04cs
dc.description.abstractMajority of power producing, and industrial processes generate a significant amount of carbon dioxide (CO2). To reduce their CO2 emissions, CCS (carbon capture and storage) can be used. One of the ways for CO2 capture is rotating packed bed (RPB), which operates on a similar principle as an absorption tower. However, in the RPB, mass transfer rate is driven by a centrifugal force, hence the RPB could be much smaller than the absorption tower, which relay on gravitational force. Also, the internal design of the RPB could affect efficiency of CO2 capture. There are several types of packing design, such as raised mesh, Zigzag, metal foam, or wire mesh. This study is focused on testing and construction of a transparent wire mesh packing, which could be used for analyse of fluid behaviour inside the packing e.g., a flow character, a liquid hold up and a liquid-gas interfacial. The operating packing speeds in the experimental part were 300 rpm, 600 rpm, 1200 rpm and 1800 rpm. The operating liquid (water) was supplied by six plain orifice nozzles with 1.44 mm diameter. Water was supplied to the system in a range of liquid flow rates from 44 to 176 kg/h. This corresponds to the jet velocity of 1.25 – 5.00 m/s. The observed area was the entry of the water jet into the wire mesh, where the atomization is the most intense. For the measurement, a high-speed camera was used. It is evident from results that with the higher jet velocity, the penetrating distance is larger, and the atomization is more intense.en
dc.formattextcs
dc.format.extent1-5cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationEPJ web of conferences (Print). 2024, vol. 299, p. 1-5.en
dc.identifier.doi10.1051/epjconf/202429901012cs
dc.identifier.issn2101-6275cs
dc.identifier.orcid0009-0005-4871-7136cs
dc.identifier.orcid0000-0002-1193-519Xcs
dc.identifier.orcid0000-0001-6647-6720cs
dc.identifier.orcid0000-0002-7854-9533cs
dc.identifier.orcid0000-0002-7270-3982cs
dc.identifier.orcid0000-0002-1409-5165cs
dc.identifier.other190020cs
dc.identifier.researcheridAAY-7288-2021cs
dc.identifier.researcheridCVT-7747-2022cs
dc.identifier.scopus57189715785cs
dc.identifier.scopus6602494673cs
dc.identifier.urihttps://hdl.handle.net/11012/249953
dc.language.isoencs
dc.publisherEDP Sciencescs
dc.relation.ispartofEPJ web of conferences (Print)cs
dc.relation.urihttps://www.epj-conferences.org/articles/epjconf/abs/2024/09/epjconf_efm2024_01012/epjconf_efm2024_01012.htmlcs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2101-6275/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectrotating packed bed; dispersionen
dc.subjectdropleten
dc.titleLiquid dispersion in inner cavity of rotating packed beden
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-190020en
sync.item.dbtypeVAVen
sync.item.insts2025.02.03 15:46:59en
sync.item.modts2025.02.03 10:32:12en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Energetický ústavcs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
epjconf_efm2024_01012.pdf
Size:
3.76 MB
Format:
Adobe Portable Document Format
Description:
file epjconf_efm2024_01012.pdf