RacerF: Data Race Detection with Frama-C (Competition Contribution)
| dc.contributor.author | Dacík, Tomáš | cs |
| dc.contributor.author | Vojnar, Tomáš | cs |
| dc.coverage.volume | 15698 | cs |
| dc.date.accessioned | 2025-10-21T07:05:37Z | |
| dc.date.available | 2025-10-21T07:05:37Z | |
| dc.date.issued | 2025-05-01 | cs |
| dc.description.abstract | RacerF is a static analyser for detection of data races in multithreaded C programs implemented as a plugin of the Frama-C platform. The approach behind RacerF is mostly heuristic and relies on analysis of the sequential behaviour of particular threads whose results are generalised using a combination of under- and over-approximating techniques to allow analysis of the multithreading behaviour. In particular, in SV-COMP'25, RacerF relies on the Frama-C's abstract interpreter EVA to perform the analysis of the sequential behaviour. Although RacerF does not provide any formal guarantees, it ranked second in the NoDataRace-Main sub-category, providing the largest number of correct results (when excluding metaverifiers) and just 4 false positives. | en |
| dc.description.abstract | RacerF is a static analyser for detection of data races in multithreaded C programs implemented as a plugin of the Frama-C platform. The approach behind RacerF is mostly heuristic and relies on analysis of the sequential behaviour of particular threads whose results are generalised using a combination of under- and over-approximating techniques to allow analysis of the multithreading behaviour. In particular, in SV-COMP'25, RacerF relies on the Frama-C's abstract interpreter EVA to perform the analysis of the sequential behaviour. Although RacerF does not provide any formal guarantees, it ranked second in the NoDataRace-Main sub-category, providing the largest number of correct results (when excluding metaverifiers) and just 4 false positives. | en |
| dc.format | text | cs |
| dc.format.extent | 248-253 | cs |
| dc.format.mimetype | application/pdf | cs |
| dc.identifier.citation | Proceedings of the 31st International Conference on Tools and Algorithms for the Construction and Analysis of Systems, part 3. 2025, vol. 15698, p. 248-253. | en |
| dc.identifier.doi | 10.1007/978-3-031-90660-2_20 | cs |
| dc.identifier.isbn | 978-3-031-90659-6 | cs |
| dc.identifier.orcid | 0000-0003-4083-8943 | cs |
| dc.identifier.orcid | 0000-0002-2746-8792 | cs |
| dc.identifier.other | 198081 | cs |
| dc.identifier.researcherid | K-5057-2015 | cs |
| dc.identifier.scopus | 8727483800 | cs |
| dc.identifier.uri | https://hdl.handle.net/11012/255590 | |
| dc.language.iso | en | cs |
| dc.publisher | Springer Nature Switzerland AG | cs |
| dc.relation.ispartof | Proceedings of the 31st International Conference on Tools and Algorithms for the Construction and Analysis of Systems, part 3 | cs |
| dc.relation.uri | https://link.springer.com/content/pdf/10.1007/978-3-031-90660-2_20.pdf | cs |
| dc.rights | Creative Commons Attribution 4.0 International | cs |
| dc.rights.access | openAccess | cs |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
| dc.subject | data race | en |
| dc.subject | data race detection | en |
| dc.subject | static analysis | en |
| dc.subject | program verification | en |
| dc.subject | SV-COMP | en |
| dc.subject | data race | |
| dc.subject | data race detection | |
| dc.subject | static analysis | |
| dc.subject | program verification | |
| dc.subject | SV-COMP | |
| dc.title | RacerF: Data Race Detection with Frama-C (Competition Contribution) | en |
| dc.title.alternative | RacerF: Data Race Detection with Frama-C (Competition Contribution) | en |
| dc.type.driver | conferenceObject | en |
| dc.type.status | Peer-reviewed | en |
| dc.type.version | publishedVersion | en |
| eprints.grantNumber | info:eu-repo/grantAgreement/GA0/GA/GA23-06506S | cs |
| sync.item.dbid | VAV-198081 | en |
| sync.item.dbtype | VAV | en |
| sync.item.insts | 2025.10.21 09:05:37 | en |
| sync.item.modts | 2025.10.21 08:32:52 | en |
| thesis.grantor | Vysoké učení technické v Brně. Fakulta informačních technologií. Ústav inteligentních systémů | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 9783031906602_20.pdf
- Size:
- 251.62 KB
- Format:
- Adobe Portable Document Format
- Description:
- file 9783031906602_20.pdf
