Study of airflow in the trachea of idealized model of human tracheobronchial airways during breathing cycle

Loading...
Thumbnail Image

Authors

Elcner, Jakub
Lízal, František
Jedelský, Jan
Jícha, Miroslav

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

EDP Sciences
Altmetrics

Abstract

Article deals with numerical simulations and its verification by experiments in trachea of idealized geometry of tracheobronchial airways by using unsteady RANS approach. Respiratory cycle was simulated by sinusoidal function under period of 4 seconds and tidal volume of 0.5 litres of air which corresponds to breathing under resting condition. Results was compared with experiments measured by laser-Doppler velocimeter in eight points on four cross sections on trachea. Model consists of mouth cavity, larynx and tracheobronchial tree up to fourth generation of branching.
Article deals with numerical simulations and its verification by experiments in trachea of idealized geometry of tracheobronchial airways by using unsteady RANS approach. Respiratory cycle was simulated by sinusoidal function under period of 4 seconds and tidal volume of 0.5 litres of air which corresponds to breathing under resting condition. Results was compared with experiments measured by laser-Doppler velocimeter in eight points on four cross sections on trachea. Model consists of mouth cavity, larynx and tracheobronchial tree up to fourth generation of branching.

Description

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO