Implementation of Broadband Electrically Detected Magnetic Resonance in a Sub-THz FraScan Spectrometer
Loading...
Date
2023-06-20
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Abstract
Electrically detected magnetic resonance (EDMR) is an effective spectroscopic method used for characterizing semiconductive solid-state materials. High spin sensitivity and the capability to explore spin-dependent transport mechanisms, which are crucial for the development of semiconductor devices, define it from other methods based on magnetic resonance. High frequency and high magnetic field EDMR implementation was motivated by the necessity to obtain access to more precise, high-resolution data to enhance the method's research potential. We present an EDMR system based on a unique THz FraScan spectrometer, which performs frequency sweeps ranging from 80 GHz to 1.1 THz, and the magnetic field sweeps up to 16 T. The study addresses the instrumentation, detection scheme, and 85-328.84-GHz EDMR results on highly nitrogen-doped 15R SiC monocrystals. Furthermore, the results demonstrate a subjective advantage of frequency-domain EDMR (FD EDMR) over conventional magnetic field domain measurements in terms of substantially greater signal-to-noise ratio (SNR) and the ability to record an EDMR frequency-field map (EDMR FFM).
Description
Citation
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT. 2023, vol. 72, issue 6006708, 8 p.
https://ieeexplore.ieee.org/document/10158508
https://ieeexplore.ieee.org/document/10158508
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/