Investigation of effect of electrode polarity on electrochemistry and magnetohydrodynamics using tertiary current distribution in electroslag remelting process

Loading...
Thumbnail Image

Authors

Karimi-Sibaki, Ebrahim
Kharicha, Abdellah
Vakhrushev, Dmitrii
Wu, Menghuai
Ludwig, Andreas
Boháček, Jan

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Springer
Altmetrics

Abstract

Transport phenomena including the electromagnetic, concentration of ions, flow, and thermal fields in the electroslag remelting (ESR) process made of slag, electrode, air, mold, and melt pool are computed considering tertiary current distribution. Nernst-Planck equations are solved in the bulk of slag, and faradaic reactions are regarded at the metal-slag interface. Aiming at exploring electrochemical effects on the behavior of the ESR process, the calculated field structures are compared with those obtained using the classical ohmic approach, namely, primary current distribution whereby variations in concentrations of ions and faradaic reactions are ignored. Also, the influence of the earth magnetic field on magnetohydrodynamics in the melt pool and slag is considered. The impact of the polarity of electrode, whether positive, also known as direct current reverse polarity (DCRP), or negative, as known as direct current straight polarity (DCSP), on the transport of oxygen to the ingot of ESR is investigated. The obtained modeling results enabled us to explain the experimental observation of higher oxygen content in DCSP than that of DCRP operated ESR process.
Transport phenomena including the electromagnetic, concentration of ions, flow, and thermal fields in the electroslag remelting (ESR) process made of slag, electrode, air, mold, and melt pool are computed considering tertiary current distribution. Nernst-Planck equations are solved in the bulk of slag, and faradaic reactions are regarded at the metal-slag interface. Aiming at exploring electrochemical effects on the behavior of the ESR process, the calculated field structures are compared with those obtained using the classical ohmic approach, namely, primary current distribution whereby variations in concentrations of ions and faradaic reactions are ignored. Also, the influence of the earth magnetic field on magnetohydrodynamics in the melt pool and slag is considered. The impact of the polarity of electrode, whether positive, also known as direct current reverse polarity (DCRP), or negative, as known as direct current straight polarity (DCSP), on the transport of oxygen to the ingot of ESR is investigated. The obtained modeling results enabled us to explain the experimental observation of higher oxygen content in DCSP than that of DCRP operated ESR process.

Description

Citation

JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL. 2021, vol. 28, issue 12, p. 1551-1561.
https://link.springer.com/article/10.1007/s42243-021-00686-z

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO