Deep Convolutional Networks For Oct Image Classification

but.event.date25.04.2019cs
but.event.titleStudent EEICT 2019cs
dc.contributor.authorHesko, Branislav
dc.date.accessioned2020-04-16T07:19:36Z
dc.date.available2020-04-16T07:19:36Z
dc.date.issued2019cs
dc.description.abstractIn this work, OCT (optical coherence tomography) images are classified according to the present pathology into four distinct categories. Three different neural network models are used to classify images, each model is recent and we are achieving exceptional results on the testing dataset, which was unknown to the network during the training. Accuracy on the testing set is higher than 98% and only a few of images are classified into the wrong category. This makes our approach perspective for future automatic use. To further improve results, all three models are using transfer learning.en
dc.formattextcs
dc.format.extent437-441cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationProceedings of the 25st Conference STUDENT EEICT 2019. s. 437-441. ISBN 978-80-214-5735-5cs
dc.identifier.isbn978-80-214-5735-5
dc.identifier.urihttp://hdl.handle.net/11012/186712
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.relation.ispartofProceedings of the 25st Conference STUDENT EEICT 2019en
dc.relation.urihttp://www.feec.vutbr.cz/EEICT/cs
dc.rights© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.rights.accessopenAccessen
dc.subjectOCTen
dc.subjectdeep learningen
dc.subjectclassificationen
dc.subjectretinaen
dc.titleDeep Convolutional Networks For Oct Image Classificationen
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentFakulta elektrotechniky a komunikačních technologiícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
437_eeict2019.pdf
Size:
2.64 MB
Format:
Adobe Portable Document Format
Description: