Computational image enhancement of multimode fibre-based holographic endo-microscopy: harnessing the muddy modes

dc.contributor.authorChmelíková, Terezacs
dc.contributor.authorŠiler, Martincs
dc.contributor.authorFlaes, Dirk E. Boonzajercs
dc.contributor.authorJákl, Petrcs
dc.contributor.authorTurtaev, Sergeycs
dc.contributor.authorKrátký, Stanislavcs
dc.contributor.authorHeintzmann, Rainercs
dc.contributor.authorUhlířová, Hanacs
dc.contributor.authorČižmár, Tomášcs
dc.coverage.issue23cs
dc.coverage.volume29cs
dc.date.issued2021-11-08cs
dc.description.abstractIn imaging geometries, which employ wavefront-shaping to control the light transport through a multi-mode optical fibre (MMF), this terminal hair-thin optical component acts as a minimally invasive objective lens, enabling high resolution laser-scanning fluorescence microscopy inside living tissues at depths hardly accessible by any other light-based technique. Even in the most advanced systems, the diffraction-limited foci scanning the object across the focal plane are contaminated by a stray optical signal carrying typically few tens of % of the total optical power. The stray illumination takes the shape of a randomised but reproducible speckle, and is unique for each position of the focus. We experimentally demonstrate that the performance of imaging a fluorescent object can be significantly improved, when resulting images are computationally post-processed, utilising records of intensities of all speckle-contaminated foci used in the imaging procedure. We present two algorithms based on a regularised iterative inversion and regularised direct pseudo-inversion respectively which lead to enhancement of the image contrast and resolution. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreementen
dc.description.abstractIn imaging geometries, which employ wavefront-shaping to control the light transport through a multi-mode optical fibre (MMF), this terminal hair-thin optical component acts as a minimally invasive objective lens, enabling high resolution laser-scanning fluorescence microscopy inside living tissues at depths hardly accessible by any other light-based technique. Even in the most advanced systems, the diffraction-limited foci scanning the object across the focal plane are contaminated by a stray optical signal carrying typically few tens of % of the total optical power. The stray illumination takes the shape of a randomised but reproducible speckle, and is unique for each position of the focus. We experimentally demonstrate that the performance of imaging a fluorescent object can be significantly improved, when resulting images are computationally post-processed, utilising records of intensities of all speckle-contaminated foci used in the imaging procedure. We present two algorithms based on a regularised iterative inversion and regularised direct pseudo-inversion respectively which lead to enhancement of the image contrast and resolution. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreementen
dc.formattextcs
dc.format.extent38206-38220cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationOPTICS EXPRESS. 2021, vol. 29, issue 23, p. 38206-38220.en
dc.identifier.doi10.1364/OE.434848cs
dc.identifier.issn1094-4087cs
dc.identifier.orcid0000-0002-7022-5163cs
dc.identifier.orcid0000-0002-0704-3148cs
dc.identifier.other174094cs
dc.identifier.researcheridD-3784-2012cs
dc.identifier.researcheridE-2702-2012cs
dc.identifier.scopus6602295902cs
dc.identifier.urihttp://hdl.handle.net/11012/203100
dc.language.isoencs
dc.publisherOptica Publishing Groupcs
dc.relation.ispartofOPTICS EXPRESScs
dc.relation.urihttps://www.osapublishing.org/oe/fulltext.cfm?uri=oe-29-23-38206&id=464465cs
dc.rights(C) Optica Publishing Groupcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1094-4087/cs
dc.subjectLIGHTen
dc.subjectTRANSFORMATIONen
dc.subjectTRANSMISSIONen
dc.subjectRESOLUTIONen
dc.subjectPHASEen
dc.subjectLIGHT
dc.subjectTRANSFORMATION
dc.subjectTRANSMISSION
dc.subjectRESOLUTION
dc.subjectPHASE
dc.titleComputational image enhancement of multimode fibre-based holographic endo-microscopy: harnessing the muddy modesen
dc.title.alternativeComputational image enhancement of multimode fibre-based holographic endo-microscopy: harnessing the muddy modesen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-174094en
sync.item.dbtypeVAVen
sync.item.insts2025.10.14 15:17:38en
sync.item.modts2025.10.14 09:40:11en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Experimentální biofotonikacs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
oe292338206.pdf
Size:
4.67 MB
Format:
Adobe Portable Document Format
Description:
oe292338206.pdf