Computational image enhancement of multimode fibre-based holographic endo-microscopy: harnessing the muddy modes
dc.contributor.author | Chmelíková, Tereza | cs |
dc.contributor.author | Šiler, Martin | cs |
dc.contributor.author | Flaes, Dirk E. Boonzajer | cs |
dc.contributor.author | Jákl, Petr | cs |
dc.contributor.author | Turtaev, Sergey | cs |
dc.contributor.author | Krátký, Stanislav | cs |
dc.contributor.author | Heintzmann, Rainer | cs |
dc.contributor.author | Uhlířová, Hana | cs |
dc.contributor.author | Čižmár, Tomáš | cs |
dc.coverage.issue | 23 | cs |
dc.coverage.volume | 29 | cs |
dc.date.issued | 2021-11-08 | cs |
dc.description.abstract | In imaging geometries, which employ wavefront-shaping to control the light transport through a multi-mode optical fibre (MMF), this terminal hair-thin optical component acts as a minimally invasive objective lens, enabling high resolution laser-scanning fluorescence microscopy inside living tissues at depths hardly accessible by any other light-based technique. Even in the most advanced systems, the diffraction-limited foci scanning the object across the focal plane are contaminated by a stray optical signal carrying typically few tens of % of the total optical power. The stray illumination takes the shape of a randomised but reproducible speckle, and is unique for each position of the focus. We experimentally demonstrate that the performance of imaging a fluorescent object can be significantly improved, when resulting images are computationally post-processed, utilising records of intensities of all speckle-contaminated foci used in the imaging procedure. We present two algorithms based on a regularised iterative inversion and regularised direct pseudo-inversion respectively which lead to enhancement of the image contrast and resolution. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement | en |
dc.format | text | cs |
dc.format.extent | 38206-38220 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | OPTICS EXPRESS. 2021, vol. 29, issue 23, p. 38206-38220. | en |
dc.identifier.doi | 10.1364/OE.434848 | cs |
dc.identifier.issn | 1094-4087 | cs |
dc.identifier.orcid | 0000-0002-7022-5163 | cs |
dc.identifier.orcid | 0000-0002-0704-3148 | cs |
dc.identifier.other | 174094 | cs |
dc.identifier.researcherid | D-3784-2012 | cs |
dc.identifier.researcherid | E-2702-2012 | cs |
dc.identifier.scopus | 6602295902 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/203100 | |
dc.language.iso | en | cs |
dc.publisher | Optica Publishing Group | cs |
dc.relation.ispartof | OPTICS EXPRESS | cs |
dc.relation.uri | https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-29-23-38206&id=464465 | cs |
dc.rights | (C) Optica Publishing Group | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/1094-4087/ | cs |
dc.subject | LIGHT | en |
dc.subject | TRANSFORMATION | en |
dc.subject | TRANSMISSION | en |
dc.subject | RESOLUTION | en |
dc.subject | PHASE | en |
dc.title | Computational image enhancement of multimode fibre-based holographic endo-microscopy: harnessing the muddy modes | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-174094 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2025.02.03 15:50:41 | en |
sync.item.modts | 2025.01.17 15:13:53 | en |
thesis.grantor | Vysoké učení technické v Brně. Středoevropský technologický institut VUT. Experimentální biofotonika | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- oe292338206.pdf
- Size:
- 4.67 MB
- Format:
- Adobe Portable Document Format
- Description:
- oe292338206.pdf