Combination NIPS/TIPS Synthesis of -Fe2O3 and /-Fe2O3 Doped PVDF Composite for Efficient Piezocatalytic Degradation of Rhodamine B

Loading...
Thumbnail Image

Authors

Magomedova, Asiyat
Rabadanova, Alina
Shuaibov, Abdulatip
Selimov, Daud
Sobola, Dinara
Rabadanov, Kamil
Giraev, Kamal M.
Orudzhev, Farid

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Altmetrics

Abstract

Highly porous membranes based on polyvinylidene fluoride (PVDF) with the addition of nanoscale particles of non-magnetic and magnetic iron oxides were synthesized using a combined method of non-solvent induced phase separation (NIPS) and thermo-induced phase separation (TIPS) based on the technique developed by Dr. Blade. The obtained membranes were characterized using SEM, EDS, XRD, IR, diffuse reflectance spectroscopy, and fluorescent microscopy. It was shown that the membranes possessed a high fraction of electroactive phase, which increased up to a maximum of 96% with the addition of 2 wt% of alpha-Fe2O3 and alpha/gamma-Fe2O3 nanoparticles. It was demonstrated that doping PVDF with nanoparticles contributed to the reduction of pore size in the membrane. All membranes exhibited piezocatalytic activity in the degradation of Rhodamine B. The degree of degradation increased from 69% when using pure PVDF membrane to 90% when using the composite membrane. The nature of the additive did not affect the piezocatalytic activity. It was determined that the main reactive species responsible for the degradation of Rhodamine B were (OH)-O-center dot and O-center dot(2)-. It was also shown that under piezocatalytic conditions, composite membranes generated a piezopotential of approximately 2.5 V.
Highly porous membranes based on polyvinylidene fluoride (PVDF) with the addition of nanoscale particles of non-magnetic and magnetic iron oxides were synthesized using a combined method of non-solvent induced phase separation (NIPS) and thermo-induced phase separation (TIPS) based on the technique developed by Dr. Blade. The obtained membranes were characterized using SEM, EDS, XRD, IR, diffuse reflectance spectroscopy, and fluorescent microscopy. It was shown that the membranes possessed a high fraction of electroactive phase, which increased up to a maximum of 96% with the addition of 2 wt% of alpha-Fe2O3 and alpha/gamma-Fe2O3 nanoparticles. It was demonstrated that doping PVDF with nanoparticles contributed to the reduction of pore size in the membrane. All membranes exhibited piezocatalytic activity in the degradation of Rhodamine B. The degree of degradation increased from 69% when using pure PVDF membrane to 90% when using the composite membrane. The nature of the additive did not affect the piezocatalytic activity. It was determined that the main reactive species responsible for the degradation of Rhodamine B were (OH)-O-center dot and O-center dot(2)-. It was also shown that under piezocatalytic conditions, composite membranes generated a piezopotential of approximately 2.5 V.

Description

Citation

MOLECULES. 2023, vol. 28, issue 19, p. 1-18.
https://www.mdpi.com/1420-3049/28/19/6932

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO