Analysis of fiber deposition using automatic image processing method
Loading...
Date
Authors
Bělka, Miloslav
Lízal, František
Jedelský, Jan
Jícha, Miroslav
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
EDP Sciences
Altmetrics
Abstract
Fibers are permanent threat for a human health. They have an ability to penetrate deeper in the human lung, deposit there and cause health hazards, e.g. lung cancer. An experiment was carried out to gain more data about deposition of fibers. Monodisperse glass fibers were delivered into a realistic model of human airways with an inspiratory flow rate of 30 l/min. Replica included human airways from oral cavity up to seventh generation of branching. Deposited fibers were rinsed from the model and placed on nitrocellulose filters after the delivery. A new novel method was established for deposition data acquisition. The method is based on a principle of image analysis. The images were captured by high definition camera attached to a phase contrast microscope. Results of new method were compared with standard PCM method, which follows methodology NIOSH 7400, and a good match was found. The new method was found applicable for evaluation of fibers and deposition fraction and deposition efficiency were calculated afterwards.
Fibers are permanent threat for a human health. They have an ability to penetrate deeper in the human lung, deposit there and cause health hazards, e.g. lung cancer. An experiment was carried out to gain more data about deposition of fibers. Monodisperse glass fibers were delivered into a realistic model of human airways with an inspiratory flow rate of 30 l/min. Replica included human airways from oral cavity up to seventh generation of branching. Deposited fibers were rinsed from the model and placed on nitrocellulose filters after the delivery. A new novel method was established for deposition data acquisition. The method is based on a principle of image analysis. The images were captured by high definition camera attached to a phase contrast microscope. Results of new method were compared with standard PCM method, which follows methodology NIOSH 7400, and a good match was found. The new method was found applicable for evaluation of fibers and deposition fraction and deposition efficiency were calculated afterwards.
Fibers are permanent threat for a human health. They have an ability to penetrate deeper in the human lung, deposit there and cause health hazards, e.g. lung cancer. An experiment was carried out to gain more data about deposition of fibers. Monodisperse glass fibers were delivered into a realistic model of human airways with an inspiratory flow rate of 30 l/min. Replica included human airways from oral cavity up to seventh generation of branching. Deposited fibers were rinsed from the model and placed on nitrocellulose filters after the delivery. A new novel method was established for deposition data acquisition. The method is based on a principle of image analysis. The images were captured by high definition camera attached to a phase contrast microscope. Results of new method were compared with standard PCM method, which follows methodology NIOSH 7400, and a good match was found. The new method was found applicable for evaluation of fibers and deposition fraction and deposition efficiency were calculated afterwards.
Description
Citation
EPJ Web of Conferences. 2013, vol. 45, issue 1, p. 1-4.
https://www.epj-conferences.org/articles/epjconf/abs/2013/06/epjconf_efm2013_01011/epjconf_efm2013_01011.html
https://www.epj-conferences.org/articles/epjconf/abs/2013/06/epjconf_efm2013_01011/epjconf_efm2013_01011.html
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Creative Commons Attribution 2.0 Generic

0000-0001-8905-9751 