On the Effectiveness of Optimisation Algorithms for Hydrodynamic Lubrication Problems
dc.contributor.author | Kocman, František | cs |
dc.contributor.author | Novotný, Pavel | cs |
dc.coverage.issue | 5 | cs |
dc.coverage.volume | 13 | cs |
dc.date.accessioned | 2025-06-02T11:55:58Z | |
dc.date.available | 2025-06-02T11:55:58Z | |
dc.date.issued | 2025-05-08 | cs |
dc.description.abstract | In many applications, it is necessary to optimise the performance of hydrodynamic (HD) bearings. Many studies have proposed different strategies, but there remains a lack of conclusive research on the suitability of various optimisation methods. This study evaluates the most commonly used algorithms, including the genetic (GA), particle swarm (PSWM), pattern search (PSCH) and surrogate (SURG) algorithms. The effectiveness of each algorithm in finding the global minimum is analysed, with attention to the parameter settings of each algorithm. The algorithms are assessed on HD journal and thrust bearings, using analytical and numerical solutions for friction moment, bearing load-carrying capacity and outlet lubricant flow rate under multiple operating conditions. The results indicate that the PSCH algorithm was the most efficient in all cases, excelling in both finding the global minimum and speed. While the PSWM algorithm also reliably found the global minimum, it exhibited lower speed in the defined problems. In contrast, genetic algorithms and the surrogate algorithm demonstrated significantly lower efficiency in the tested problems. Although the PSCH algorithm proved to be the most efficient, the PSWM algorithm is recommended as the best default choice due to its ease of use and minimal sensitivity to parameter settings. | en |
dc.format | text | cs |
dc.format.extent | 1-32 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | Lubricants. 2025, vol. 13, issue 5, p. 1-32. | en |
dc.identifier.doi | 10.3390/lubricants13050207 | cs |
dc.identifier.issn | 2075-4442 | cs |
dc.identifier.orcid | 0009-0005-4091-8259 | cs |
dc.identifier.orcid | 0000-0002-7513-2345 | cs |
dc.identifier.other | 198031 | cs |
dc.identifier.researcherid | P-8188-2015 | cs |
dc.identifier.scopus | 57032004000 | cs |
dc.identifier.uri | https://hdl.handle.net/11012/251225 | |
dc.language.iso | en | cs |
dc.publisher | MDPI | cs |
dc.relation.ispartof | Lubricants | cs |
dc.relation.uri | https://www.mdpi.com/2075-4442/13/5/207 | cs |
dc.rights | Creative Commons Attribution 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/2075-4442/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | journal bearing | en |
dc.subject | thrust bearing | en |
dc.subject | hydrodynamic lubrication | en |
dc.subject | particle swarm algorithm | en |
dc.subject | pattern search | en |
dc.subject | surrogate algorithm | en |
dc.subject | genetic algorithm | en |
dc.title | On the Effectiveness of Optimisation Algorithms for Hydrodynamic Lubrication Problems | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
eprints.grantNumber | info:eu-repo/grantAgreement/MSM/EH/EH23_020/0008528 | cs |
sync.item.dbid | VAV-198031 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2025.06.02 13:55:58 | en |
sync.item.modts | 2025.06.02 13:32:51 | en |
thesis.grantor | Vysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav automobilního a dopravního inženýrství | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- lubricants1300207v2.pdf
- Size:
- 6.1 MB
- Format:
- Adobe Portable Document Format
- Description:
- file lubricants1300207v2.pdf