Elastic and Plastic Behavior of the QE22 Magnesium Alloy Reinforced with Short Saffil Fibers and SiC Particles

Loading...
Thumbnail Image

Authors

Zapletal, Josef
Doležal, Pavel

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI AG
Altmetrics

Abstract

Magnesium alloy QE22 (nominal composition 2 wt % Ag, 2 wt % mixture of rare earth elements, balance Mg) was reinforced with 5 vol % Saffil fibers and 15 vol % SiC particles. The hybrid composite was prepared via the squeeze cast technique. The microstructure of the monolithic alloy and composite was analyzed using scanning electron microscopy. Elastic modulus was measured at room temperature and modeled by the Halpin–Tsai–Kardos mathematical model. The strengthening effect of fibers and particles was calculated and compared with the experimentally obtained values. The main strengthening terms were determined. Fracture surfaces were studied via scanning electron microscope. While the fracture of the matrix alloy had a mainly intercrystalline character, the failure of the hybrid composite was transcrystalline
Magnesium alloy QE22 (nominal composition 2 wt % Ag, 2 wt % mixture of rare earth elements, balance Mg) was reinforced with 5 vol % Saffil fibers and 15 vol % SiC particles. The hybrid composite was prepared via the squeeze cast technique. The microstructure of the monolithic alloy and composite was analyzed using scanning electron microscopy. Elastic modulus was measured at room temperature and modeled by the Halpin–Tsai–Kardos mathematical model. The strengthening effect of fibers and particles was calculated and compared with the experimentally obtained values. The main strengthening terms were determined. Fracture surfaces were studied via scanning electron microscope. While the fracture of the matrix alloy had a mainly intercrystalline character, the failure of the hybrid composite was transcrystalline

Description

Citation

Metals. 2018, vol. 8(2), issue 133, p. 1-13.
http://www.mdpi.com/2075-4701/8/2/133

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO