Anatase and rutile nanoparticles in photopolymer 3D-printed nanocomposites: Band gap-controlled electron interactions in free-radical and cationic photocuring

dc.contributor.authorKorčušková, Martinacs
dc.contributor.authorSvatík, Jurajcs
dc.contributor.authorTomal, Wiktoriacs
dc.contributor.authorŠikyňová, Anetacs
dc.contributor.authorVishakha, Vishakhacs
dc.contributor.authorPetko, Filipcs
dc.contributor.authorGalek, Mariuszcs
dc.contributor.authorStalmach, Pawełcs
dc.contributor.authorOrtyl, Joannacs
dc.contributor.authorLepcio, Petrcs
dc.coverage.issue6cs
dc.coverage.volume200cs
dc.date.accessioned2025-02-03T14:51:24Z
dc.date.available2025-02-03T14:51:24Z
dc.date.issued2024-07-01cs
dc.description.abstractThe preparation of functional photopolymer nanocomposites is affected by both the physical and chemical interactions of nanoparticles (NPs) and polymer resin. Some NPs, such as semiconducting metal oxides, may contribute by their photocatalytic behavior and electron transfer, influencing the kinetics of the photopolymerization reaction. This study has investigated the complex effect of titanium dioxide (TiO 2 ) NPs in anatase and rutile form on the conversion, kinetics, and printability of free -radical and cationic photopolymerization resin. Two different polymorphs of TiO 2 NPs ensured identical chemical properties, but different physical effects related to their varying band gap energies and electron transfer efficiency. These parameters were found to be crucial for influencing the photopolymerization kinetics. While rutile showed a more pronounced enhancement of the free -radical photopolymerization ' s conversion and kinetics, cationic photopolymerization was favourably affected only by anatase NPs due to the photosensitization effect. These findings are critical in understanding and designing functional nanocomposite materials processed by vat photopolymerization 3D printing that could find use in optical, medical, or environmental applications.en
dc.formattextcs
dc.format.extent1-12cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationREACTIVE & FUNCTIONAL POLYMERS. 2024, vol. 200, issue 6, p. 1-12.en
dc.identifier.doi10.1016/j.reactfunctpolym.2024.105923cs
dc.identifier.issn1873-166Xcs
dc.identifier.orcid0000-0002-7056-5571cs
dc.identifier.other189994cs
dc.identifier.researcheridAAB-9822-2019cs
dc.identifier.scopus55991983000cs
dc.identifier.urihttps://hdl.handle.net/11012/250007
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofREACTIVE & FUNCTIONAL POLYMERScs
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S1381514824000981cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1873-166X/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectPhotoinitiationen
dc.subjectTitanium dioxideen
dc.subjectelectron transferen
dc.subjectCyclic voltammetryen
dc.subjectConversionen
dc.titleAnatase and rutile nanoparticles in photopolymer 3D-printed nanocomposites: Band gap-controlled electron interactions in free-radical and cationic photocuringen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-189994en
sync.item.dbtypeVAVen
sync.item.insts2025.02.03 15:51:24en
sync.item.modts2025.01.31 13:32:14en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Pokročilé polymerní materiály a kompozitcs
Files