Assessment of URANS-Type Turbulent Flow Modeling of a Single Port Submerged Entry Nozzle (SEN) for Thin Slab Continuous Casting (TSC) Process

dc.contributor.authorVakhrushev, Alexandercs
dc.contributor.authorKarimi-Sibaki, Ebrahimcs
dc.contributor.authorWu, Menghuaics
dc.contributor.authorLudwig, Andreascs
dc.contributor.authorNitzl, Geraldcs
dc.contributor.authorTang, Yongcs
dc.contributor.authorHackl, Gernotcs
dc.contributor.authorWatzinger, Josefcs
dc.contributor.authorBoháček, Jancs
dc.contributor.authorKharicha, Abdellahcs
dc.coverage.issue2cs
dc.coverage.volume55cs
dc.date.issued2024-02-16cs
dc.description.abstractThe numerical methods based on the unsteady Reynolds-averaged Navier–Stokes (URANS) equations are robust tools to model the turbulent flow for the industrial processes. They allow an acceptable grid resolution along with reasonable calculation time. Herein, the URANS approach is validated against a water model experiment for the special single port submerged entry nozzle (SEN) design used in the thin slab casting (TSC) process. A 1-to-2 under-scaled water model was constructed, including the SEN, mold, and strand Plexiglas segments. Paddle-type sensors were instrumented to measure the submeniscus velocity supported by videorecording of the dye injections to provide both qualitative and quantitative verification of the SEN flow simulations. Two advanced URANS-type models (realizable k– and shear stress transport k–) were applied to calculate velocity pattern on meshes with various resolutions. An oscillating single jet flow was detected in the experiment, which the URANS simulations initially struggled to reflect. The dimensionless analysis of the mesh properties and corresponding adjustment of the boundary layers inside the SEN allowed to resolve the flow pattern. The performed fast Fourier transform (FFT) verified a good numerical prediction of the flow frequency spectrum. The corresponding simulation strategy is proposed for the industrial CC process using the URANS approach.en
dc.formattextcs
dc.format.extent891-904cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationMETALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE. 2024, vol. 55, issue 2, p. 891-904.en
dc.identifier.doi10.1007/s11663-024-03002-8cs
dc.identifier.issn1073-5615cs
dc.identifier.orcid0000-0003-3319-4254cs
dc.identifier.other188155cs
dc.identifier.researcheridC-2078-2018cs
dc.identifier.scopus55213548700cs
dc.identifier.urihttp://hdl.handle.net/11012/245506
dc.language.isoencs
dc.publisherSpringer Naturecs
dc.relation.ispartofMETALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCEcs
dc.relation.urihttps://link.springer.com/article/10.1007/s11663-024-03002-8cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1073-5615/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectThin slab castingen
dc.subjectsubmerged entry nozzleen
dc.subjectOpenFOAMen
dc.subjectwater modelen
dc.subjectURANSen
dc.subjectsubmeniscus velocityen
dc.titleAssessment of URANS-Type Turbulent Flow Modeling of a Single Port Submerged Entry Nozzle (SEN) for Thin Slab Continuous Casting (TSC) Processen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-188155en
sync.item.dbtypeVAVen
sync.item.insts2025.02.03 15:47:28en
sync.item.modts2025.01.17 18:33:43en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Laboratoř přenosu tepla a prouděnícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s11663024030028.pdf
Size:
6 MB
Format:
Adobe Portable Document Format
Description:
file s11663024030028.pdf