Techniques For Avoiding Model Overfitting On Small Dataset

Loading...
Thumbnail Image
Date
2021
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Abstract
Building a deep learning model based on small dataset is difficult, even impossible. Toavoiding overfitting, we must constrain model, which we train. Techniques as data augmentation,regularization or data normalization could be crucial. We have created a benchmark with a simpleCNN image classifier in order to find the best techniques. As a result, we compare different types ofdata augmentation and weights regularization and data normalization on a small dataset.
Description
Citation
Proceedings I of the 27st Conference STUDENT EEICT 2021: General papers. s. 451-456. ISBN 978-80-214-5942-7
https://conf.feec.vutbr.cz/eeict/index/pages/view/ke_stazeni
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
DOI
Citace PRO