Techniques For Avoiding Model Overfitting On Small Dataset

Loading...
Thumbnail Image

Date

Authors

Kratochvila, Lukas

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií

ORCID

Abstract

Building a deep learning model based on small dataset is difficult, even impossible. Toavoiding overfitting, we must constrain model, which we train. Techniques as data augmentation,regularization or data normalization could be crucial. We have created a benchmark with a simpleCNN image classifier in order to find the best techniques. As a result, we compare different types ofdata augmentation and weights regularization and data normalization on a small dataset.

Description

Citation

Proceedings I of the 27st Conference STUDENT EEICT 2021: General papers. s. 451-456. ISBN 978-80-214-5942-7
https://conf.feec.vutbr.cz/eeict/index/pages/view/ke_stazeni

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

DOI

Endorsement

Review

Supplemented By

Referenced By

Citace PRO