The Potential of Using Birotor Machines in Modern Transport Means

Loading...
Thumbnail Image

Authors

Fomin, Oleksij
Chubykalo, Mikhaylo
Lohvinenko, Oleksandr
Píštěk, Václav
Kučera, Pavel

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Altmetrics

Abstract

The transport sector requires compact, reliable, and energy-efficient power units for modernization of road, rail, maritime, and aerial systems. Conventional piston and rotary machines often face limitations related to vibration, sealing losses, and manufacturing complexity. This study investigates birotor machines (BM), a class of positive-displacement devices combining synchronized rotation of the rotor and housing. This configuration ensures smooth kinematics, near-complete dynamic balance, and simplified design. The working principle enables continuous volumetric transformation with reduced friction and leakage, enhancing efficiency and durability. Using generalized mathematical models (GMM) developed through statistical experimental design, optimal geometric parameters were determined with a root-mean-square error below 3%. A prototype birotor compressor (BC) designed for subway rolling stock achieved equivalent output performance (0.43 m3/min at 0.8 MPa) with 82% efficiency and a mass reduction from 130 kg to 32 kg. Comparative simulations and preliminary testing of BM-based internal combustion engines (BRICE) demonstrated 3–4 times smaller and lighter units with improved reliability and environmental characteristics. The results confirm that BM technology provides a feasible and manufacturable alternative to conventional designs, suitable for integration into next-generation transport and unmanned vehicle systems.
The transport sector requires compact, reliable, and energy-efficient power units for modernization of road, rail, maritime, and aerial systems. Conventional piston and rotary machines often face limitations related to vibration, sealing losses, and manufacturing complexity. This study investigates birotor machines (BM), a class of positive-displacement devices combining synchronized rotation of the rotor and housing. This configuration ensures smooth kinematics, near-complete dynamic balance, and simplified design. The working principle enables continuous volumetric transformation with reduced friction and leakage, enhancing efficiency and durability. Using generalized mathematical models (GMM) developed through statistical experimental design, optimal geometric parameters were determined with a root-mean-square error below 3%. A prototype birotor compressor (BC) designed for subway rolling stock achieved equivalent output performance (0.43 m3/min at 0.8 MPa) with 82% efficiency and a mass reduction from 130 kg to 32 kg. Comparative simulations and preliminary testing of BM-based internal combustion engines (BRICE) demonstrated 3–4 times smaller and lighter units with improved reliability and environmental characteristics. The results confirm that BM technology provides a feasible and manufacturable alternative to conventional designs, suitable for integration into next-generation transport and unmanned vehicle systems.

Description

Citation

Machines. 2025, vol. 13, issue 11, p. 1-18.
https://www.mdpi.com/2075-1702/13/11/994

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO