Adaptive mesh refinement and a posteriori error estimates
Loading...
Date
Authors
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně, Fakulta strojního inženýrství
ORCID
Abstract
This short contribution is intended mainly for mathematicians who are not specialists in numerical analysis but would like to understand better the fundamental features of the finite element method. First, we review the finite element method for linear elliptic partial differential equations of second order. Then we concentrate on the main ideas of a priori and a posteriori error estimates, convergence and adaptive mesh refinement. We especially emphasize the pioneering convergence result of Professor Miloš Zlámal and present some modern results from the theory of the finite element method. We use several numerical examples to illustrate the presented results.
Description
Citation
Vzpomínkové odpoledne a seminář Metoda konečných prvků dnes ke 100. výročí narození profesora Miloše Zlámala. s. 78-88. ISBN 978-80-214-6392-9
https://math.fme.vutbr.cz/cz/zlamal100
https://math.fme.vutbr.cz/cz/zlamal100
Document type
Document version
Publishers's version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
DOI
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Uveďte autora-Nevyužívejte komerčně-Nezpracovávejte 4.0 International

