Adaptive mesh refinement and a posteriori error estimates

Loading...
Thumbnail Image

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně, Fakulta strojního inženýrství

ORCID

Abstract

This short contribution is intended mainly for mathematicians who are not specialists in numerical analysis but would like to understand better the fundamental features of the finite element method. First, we review the finite element method for linear elliptic partial differential equations of second order. Then we concentrate on the main ideas of a priori and a posteriori error estimates, convergence and adaptive mesh refinement. We especially emphasize the pioneering convergence result of Professor Miloš Zlámal and present some modern results from the theory of the finite element method. We use several numerical examples to illustrate the presented results.

Description

Citation

Vzpomínkové odpoledne a seminář Metoda konečných prvků dnes ke 100. výročí narození profesora Miloše Zlámala. s. 78-88. ISBN 978-80-214-6392-9
https://math.fme.vutbr.cz/cz/zlamal100

Document type

Document version

Publishers's version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

DOI

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Uveďte autora-Nevyužívejte komerčně-Nezpracovávejte 4.0 International
Citace PRO