The Dispersion-Strengthening Effect of TiN Nanoparticles Evoked by Ex Situ Nitridation of Gas-Atomized, NiCu-Based Alloy 400 in Fluidized Bed Reactor for Laser Powder Bed Fusion

dc.contributor.authorRoth, Jan-Philippcs
dc.contributor.authorŠulák, Ivocs
dc.contributor.authorGálíková, Markétacs
dc.contributor.authorDuval, Antoinecs
dc.contributor.authorBoissonnet, Germaincs
dc.contributor.authorPedraza, Fernandocs
dc.contributor.authorKrupp, Ulrichcs
dc.contributor.authorJahns, Katrincs
dc.coverage.issue5cs
dc.coverage.volume8cs
dc.date.accessioned2025-04-04T12:57:23Z
dc.date.available2025-04-04T12:57:23Z
dc.date.issued2024-10-01cs
dc.description.abstractThroughout recent years, the implementation of nanoparticles into the microstructure of additively manufactured (AM) parts has gained great attention in the material science community. The dispersion strengthening (DS) effect achieved leads to a substantial improvement in the mechanical properties of the alloy used. In this work, an ex situ approach of powder conditioning prior to the AM process as per a newly developed fluidized bed reactor (FBR) was applied to a titanium-enriched variant of the NiCu-based Alloy 400. Powders were investigated before and after FBR exposure, and it was found that the conditioning led to a significant increase in the TiN formation along grain boundaries. Manufactured to parts via laser-based powder bed fusion of metals (PBF-LB/M), the ex situ FBR approach not only revealed a superior microstructure compared to unconditioned parts but also with respect to a recently introduced in situ approach based on a gas atomization reaction synthesis (GARS). A substantially higher number of nanoparticles formed along cell walls and enabled an effective suppression of dislocation movement, resulting in excellent tensile, creep, and fatigue properties, even at elevated temperatures up to 750 degrees C. Such outstanding properties have never been documented for AM-processed Alloy 400, which is why the demonstrated FBR ex situ conditioning marks a promising modification route for future alloy systems.en
dc.formattextcs
dc.format.extent1-29cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationJournal of Manufacturing and Materials Processing. 2024, vol. 8, issue 5, p. 1-29.en
dc.identifier.doi10.3390/jmmp8050223cs
dc.identifier.issn2504-4494cs
dc.identifier.orcid0009-0000-8410-9107cs
dc.identifier.other191211cs
dc.identifier.researcheridKDM-8675-2024cs
dc.identifier.scopus58881912200cs
dc.identifier.urihttps://hdl.handle.net/11012/250831
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofJournal of Manufacturing and Materials Processingcs
dc.relation.urihttps://www.mdpi.com/2504-4494/8/5/223cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2504-4494/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectAlloy 400en
dc.subjectfluidized bed reactoren
dc.subjectlaser powder bed fusionen
dc.subjectinternal nitridationen
dc.subjectTiN nanoparticleen
dc.subjectdispersion strengtheningen
dc.titleThe Dispersion-Strengthening Effect of TiN Nanoparticles Evoked by Ex Situ Nitridation of Gas-Atomized, NiCu-Based Alloy 400 in Fluidized Bed Reactor for Laser Powder Bed Fusionen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-191211en
sync.item.dbtypeVAVen
sync.item.insts2025.04.04 14:57:23en
sync.item.modts2025.04.02 12:32:06en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Útvar podpory vědy a studiacs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
jmmp0800223.pdf
Size:
30.64 MB
Format:
Adobe Portable Document Format
Description:
file jmmp0800223.pdf