On Farey table and its compression for space optimization with guaranteed error bounds

Loading...
Thumbnail Image
Date
2016
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematiky
Altmetrics
Abstract
Farey sequences, introduced by such renowned mathematicians as John Farey, Charles Haros, and Augustin-L. Cauchy over 200 years ago, are quite well- known by today in theory of fractions, but its computational perspectives are pos- sibly not yet explored up to its merit. In this paper, we present some novel theoret- ical results and e cient algorithms for representation of a Farey sequence through a Farey table. The ranks of the fractions in a Farey sequence are stored in the Farey table to provide an e cient solution to the rank problem, thereby aiding in and speeding up any application frequently requiring fraction ranks for computational speed-up. As the size of the Farey sequence grows quadratically with its order, the Farey table becomes inadvertently large, which calls for its (lossy) compression up to a permissible error. We have, therefore, proposed two compression schemes to obtain a compressed Farey table (CFT). The necessary analysis has been done in detail to derive the error bound in a CFT. As the nal step towards space opti- mization, we have also shown how a CFT can be stored in a 1-dimensional array. Experimental results have been furnished to demonstrate the characteristics and e ciency of a Farey table and its compressed form.
Description
Citation
Mathematics for Applications. 2016 vol. 5, č. 2, s. 123-145. ISSN 1805-3629
http://ma.fme.vutbr.cz/archiv/5_2/ma_5_2_paria_et_al_final.pdf
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
© Vysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematiky
Collections
Citace PRO