On a subclass of bi-close-to-convex functions by means of the Gegenbauer polynomial
dc.contributor.author | Al Amoush, Adnan Ghazy | |
dc.contributor.author | Bulut, Serap | |
dc.coverage.issue | 2 | cs |
dc.coverage.volume | 10 | cs |
dc.date.accessioned | 2022-02-21T12:10:30Z | |
dc.date.available | 2022-02-21T12:10:30Z | |
dc.date.issued | 2021 | cs |
dc.description.abstract | In this paper, we express a new subcollection of bi-close-to-convex functions by means of Gegenbauer polynomials in the open unit disc U. Further, several related outcomes such as coefficient bounds and Fekete–Szegő inequalities are obtained. | en |
dc.format | text | cs |
dc.format.extent | 93-101 | cs |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Mathematics for Applications. 2021 vol. 10, č. 2, s. 93-101. ISSN 1805-3629 | cs |
dc.identifier.doi | 10.13164/ma.2021.08 | en |
dc.identifier.issn | 1805-3629 | |
dc.identifier.uri | http://hdl.handle.net/11012/203928 | |
dc.language.iso | en | cs |
dc.publisher | Vysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematiky | cs |
dc.relation.ispartof | Mathematics for Applications | en |
dc.relation.uri | http://ma.fme.vutbr.cz/archiv/10_2/ma_10_2_alamoush_bulut_final.pdf | cs |
dc.rights | © Vysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematiky | cs |
dc.rights.access | openAccess | en |
dc.subject | analytic functions | |
dc.subject | bi-univalent functions | |
dc.subject | Fekete–Szegő problem | |
dc.subject | Gegenbauer polynomials | |
dc.subject | coefficient bounds | |
dc.subject | subordination | |
dc.title | On a subclass of bi-close-to-convex functions by means of the Gegenbauer polynomial | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
eprints.affiliatedInstitution.department | Ústav matematiky | cs |
eprints.affiliatedInstitution.faculty | Fakulta strojního inženýrství | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- ma_10_2_alamoush_bulut_final.pdf
- Size:
- 669.97 KB
- Format:
- Adobe Portable Document Format
- Description: