On a subclass of bi-close-to-convex functions by means of the Gegenbauer polynomial

dc.contributor.authorAl Amoush, Adnan Ghazy
dc.contributor.authorBulut, Serap
dc.coverage.issue2cs
dc.coverage.volume10cs
dc.date.accessioned2022-02-21T12:10:30Z
dc.date.available2022-02-21T12:10:30Z
dc.date.issued2021cs
dc.description.abstractIn this paper, we express a new subcollection of bi-close-to-convex functions by means of Gegenbauer polynomials in the open unit disc U. Further, several related outcomes such as coefficient bounds and Fekete–Szegő inequalities are obtained.en
dc.formattextcs
dc.format.extent93-101cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationMathematics for Applications. 2021 vol. 10, č. 2, s. 93-101. ISSN 1805-3629cs
dc.identifier.doi10.13164/ma.2021.08en
dc.identifier.issn1805-3629
dc.identifier.urihttp://hdl.handle.net/11012/203928
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematikycs
dc.relation.ispartofMathematics for Applicationsen
dc.relation.urihttp://ma.fme.vutbr.cz/archiv/10_2/ma_10_2_alamoush_bulut_final.pdfcs
dc.rights© Vysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematikycs
dc.rights.accessopenAccessen
dc.subjectanalytic functions
dc.subjectbi-univalent functions
dc.subjectFekete–Szegő problem
dc.subjectGegenbauer polynomials
dc.subjectcoefficient bounds
dc.subjectsubordination
dc.titleOn a subclass of bi-close-to-convex functions by means of the Gegenbauer polynomialen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentÚstav matematikycs
eprints.affiliatedInstitution.facultyFakulta strojního inženýrstvícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ma_10_2_alamoush_bulut_final.pdf
Size:
669.97 KB
Format:
Adobe Portable Document Format
Description:
Collections