Pedestrian Detection In Image By Machine Learning
Loading...
Date
Authors
Tilgner, Martin
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
ORCID
Abstract
This work deals with pedestrian detection via convolutional neural network which can be used in autonomous car driving systems to improve travel safety. The work focuses on the influence of the training dataset on the resulting network behavior. The Faster R-CNN with ResNet 101 as backbone network and the SSDLite with MobileNet v2 as backbone network meta-architectures were selected for parameter testing. Both networks achieved real-time detection while accuracy was 61.92 % for the Faster R-CNN and 31.72 % for the SSDLite.
Description
Keywords
Citation
Proceedings of the 25st Conference STUDENT EEICT 2019. s. 409-412. ISBN 978-80-214-5735-5
http://www.feec.vutbr.cz/EEICT/
http://www.feec.vutbr.cz/EEICT/
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
cs
