Defects in Hybrid Perovskites: The Secret of Efficient Charge Transport

Loading...
Thumbnail Image

Authors

Musiienko, Artem
Ceratti, Davide Raffaele
Pipek, Jindřich
Brynza, Mykola
Elhadidy, Hassan
Belas, Eduard
Betušiak, Marián
Delport, Geraud
Praus, Petr

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

WILEY-VCH

ORCID

Altmetrics

Abstract

The interaction of free carriers with defects and some critical defect properties are still unclear in methylammonium lead halide perovskites (MHPs). Here, a multi-method approach is used to quantify and characterize defects in single crystal MAPbI(3), giving a cross-checked overview of their properties. Time of flight current waveform spectroscopy reveals the interaction of carriers with five shallow and deep defects. Photo-Hall and thermoelectric effect spectroscopy assess the defect density, cross-section, and relative (to the valence band) energy. The detailed reconstruction of free carrier relaxation through Monte Carlo simulation allows for quantifying the lifetime, mobility, and diffusion length of holes and electrons separately. Here, it is demonstrated that the dominant part of defects releases free carriers after trapping; this happens without non-radiative recombination with consequent positive effects on the photoconversion and charge transport properties. On the other hand, shallow traps decrease drift mobility sensibly. The results are the key for the optimization of the charge transport properties and defects in MHP and contribute to the research aiming to improve perovskite stability. This study paves the way for doping and defect control, enhancing the scalability of perovskite devices with large diffusion lengths and lifetimes.
The interaction of free carriers with defects and some critical defect properties are still unclear in methylammonium lead halide perovskites (MHPs). Here, a multi-method approach is used to quantify and characterize defects in single crystal MAPbI(3), giving a cross-checked overview of their properties. Time of flight current waveform spectroscopy reveals the interaction of carriers with five shallow and deep defects. Photo-Hall and thermoelectric effect spectroscopy assess the defect density, cross-section, and relative (to the valence band) energy. The detailed reconstruction of free carrier relaxation through Monte Carlo simulation allows for quantifying the lifetime, mobility, and diffusion length of holes and electrons separately. Here, it is demonstrated that the dominant part of defects releases free carriers after trapping; this happens without non-radiative recombination with consequent positive effects on the photoconversion and charge transport properties. On the other hand, shallow traps decrease drift mobility sensibly. The results are the key for the optimization of the charge transport properties and defects in MHP and contribute to the research aiming to improve perovskite stability. This study paves the way for doping and defect control, enhancing the scalability of perovskite devices with large diffusion lengths and lifetimes.

Description

Citation

ADVANCED FUNCTIONAL MATERIALS. 2021, vol. 31, issue 48, p. 1-13.
https://onlinelibrary.wiley.com/doi/10.1002/adfm.202104467

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO