Shepherding Hordes of Markov Chains

Loading...
Thumbnail Image
Date
2019-04-17
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Springer International Publishing
Altmetrics
Abstract
This paper considers large families of Markov chains (MCs) that are defined over a set of parameters with finite discrete domains. Such families occur in software product lines, planning under partial observability, and sketching of probabilistic programs. Simple questions, like does at least one family member satisfy a property?, are NP-hard. We tackle two problems: distinguish family members that satisfy a given quantitative property from those that do not, and determine a family member that satisfies the property optimally, i.e., with the highest probability or reward. We show that combining two well-known techniques, MDP model checking and abstraction refinement, mitigates the computational complexity. Experiments on a broad set of benchmarks show that in many situations, our approach is able to handle families of millions of MCs, providing superior scalability compared to existing solutions.
Tento článek uvažuje problém syntézy topologie v Markovovských řetězcích a navrhuje řešení pomocí abstrakce založené na Markovovských rozhodovacích procesech a iterativní zjemněvání této abstrakce.
Description
Citation
Proceedings of 25th International Conference on Tools and Algorithms for the Construction and Analysis of Systems. 2019, vol. 11428, p. 172-190.
https://link.springer.com/chapter/10.1007/978-3-030-17465-1_10
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
Citace PRO