Public-key cryptography and Chebyshev polynomials

but.committeedoc. Ing. Luděk Nechvátal, Ph.D. (předseda) prof. RNDr. Josef Šlapal, CSc. (místopředseda) doc. RNDr. Jiří Tomáš, Dr. (člen) doc. Ing. Jiří Šremr, Ph.D. (člen) prof. RNDr. Miloslav Druckmüller, CSc. (člen) prof. Bruno Rubino (člen) prof. Giuli Massimiliano (člen) prof. Lattanzio Corrado (člen)cs
but.defenceThe student introduced his diploma thesis to the committee members and explained the fundamentals of his topic called Public-key cryptography and Chebyshev polynomials. The supervisor review and the opponent's review were read. The student answered the opponent's questions well. Slapal: What is the main contribution of your thesis? He answered in the same sense as supervisor wrote in the review.cs
but.jazykangličtina (English)
but.programApplied and Interdisciplinary Mathematicscs
but.resultpráce byla úspěšně obhájenacs
dc.contributor.advisorCivino, Robertoen
dc.contributor.authorAppiah, Francisen
dc.contributor.refereeKureš, Miroslaven
dc.date.created2023cs
dc.description.abstractPublic-key encryption enables secure communication over an insecure network. In this thesis, we discuss two public key encryption schemes based on Chebyshev polynomials, which are a class of polynomials that exhibit chaotic properties suitable for cryptographic applications. We discuss that the RSA and ElGamal algorithms are secure, practical, and can be used for encryption. We extend the Chebyshev polynomials over a finite field and demonstrate that the new ElGamal-like and RSA-like algorithms are as secure as the original ElGamal and RSA algorithms.en
dc.description.abstractPublic-key encryption enables secure communication over an insecure network. In this thesis, we discuss two public key encryption schemes based on Chebyshev polynomials, which are a class of polynomials that exhibit chaotic properties suitable for cryptographic applications. We discuss that the RSA and ElGamal algorithms are secure, practical, and can be used for encryption. We extend the Chebyshev polynomials over a finite field and demonstrate that the new ElGamal-like and RSA-like algorithms are as secure as the original ElGamal and RSA algorithms.cs
dc.description.markBcs
dc.identifier.citationAPPIAH, F. Public-key cryptography and Chebyshev polynomials [online]. Brno: Vysoké učení technické v Brně. Fakulta strojního inženýrství. 2023.cs
dc.identifier.other150327cs
dc.identifier.urihttp://hdl.handle.net/11012/212433
dc.language.isoencs
dc.publisherVysoké učení technické v Brně. Fakulta strojního inženýrstvícs
dc.rightsStandardní licenční smlouva - přístup k plnému textu bez omezenícs
dc.subjectPublic key encryptionen
dc.subjectRSAen
dc.subjectElGamal algorithmen
dc.subjectChaotic mapsen
dc.subjectChebyshev polynomials.en
dc.subjectPublic key encryptioncs
dc.subjectRSAcs
dc.subjectElGamal algorithmcs
dc.subjectChaotic mapscs
dc.subjectChebyshev polynomials.cs
dc.titlePublic-key cryptography and Chebyshev polynomialsen
dc.title.alternativePublic-key cryptography and Chebyshev polynomialscs
dc.typeTextcs
dc.type.drivermasterThesisen
dc.type.evskpdiplomová prácecs
dcterms.dateAccepted2023-06-14cs
dcterms.modified2023-06-16-09:16:17cs
eprints.affiliatedInstitution.facultyFakulta strojního inženýrstvícs
sync.item.dbid150327en
sync.item.dbtypeZPen
sync.item.insts2025.03.27 10:43:26en
sync.item.modts2025.01.15 15:40:23en
thesis.disciplinebez specializacecs
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav matematikycs
thesis.levelInženýrskýcs
thesis.nameIng.cs
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
final-thesis.pdf
Size:
2.5 MB
Format:
Adobe Portable Document Format
Description:
final-thesis.pdf
Loading...
Thumbnail Image
Name:
review_150327.html
Size:
9.26 KB
Format:
Hypertext Markup Language
Description:
file review_150327.html
Collections