A Wavelet Scattering Convolutional Network for Magnetic Resonance Spectroscopy Signal Quantitation

Loading...
Thumbnail Image

Authors

Shamaei, Amirmohammad
Starčuková, Jana
Starčuk, Zenon

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Science and Technology Publications

ORCID

Altmetrics

Abstract

Magnetic resonance spectroscopy (MRS) can provide quantitative information about local metabolite concentrations in living tissues, but in practice the quantification can be difficult. Recently deep learning (DL) has been used for quantification of MRS signals in the frequency domain, and DL combined with time-frequency analysis for artefact detection in MRS. The networks most widely used in previous studies were Convolutional Neural Networks (CNN). Nonetheless, the optimal architecture and hyper-parameters of the CNN for MRS are not well understood; CNN has no knowledge about the nature of the MRS signal and its training is computationally expensive. On the other hand, Wavelet Scattering Convolutional Network (WSCN) is well-understood and computationally cheap. In this study, we found that a wavelet scattering network could hopefully be also used for metabolite quantification.
Magnetic resonance spectroscopy (MRS) can provide quantitative information about local metabolite concentrations in living tissues, but in practice the quantification can be difficult. Recently deep learning (DL) has been used for quantification of MRS signals in the frequency domain, and DL combined with time-frequency analysis for artefact detection in MRS. The networks most widely used in previous studies were Convolutional Neural Networks (CNN). Nonetheless, the optimal architecture and hyper-parameters of the CNN for MRS are not well understood; CNN has no knowledge about the nature of the MRS signal and its training is computationally expensive. On the other hand, Wavelet Scattering Convolutional Network (WSCN) is well-understood and computationally cheap. In this study, we found that a wavelet scattering network could hopefully be also used for metabolite quantification.

Description

Citation

Proceedings of the 14th International Joint Conference on Biomedical Engineering Systems and Technologies - (Volume 4). 2021, p. 268-275.
https://www.scitepress.org/PublicationsDetail.aspx?ID=gelMvIsqMOc=&t=1

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Citace PRO