High Cycle Fatigue Behaviour of 316L Stainless Steel Produced via Selective Laser Melting Method and Post Processed by Hot Rotary Swaging

dc.contributor.authorOpěla, Petrcs
dc.contributor.authorBenč, Marekcs
dc.contributor.authorKolomý, Štěpáncs
dc.contributor.authorJakůbek, Zdeněkcs
dc.contributor.authorBeranová, Denisacs
dc.coverage.issue9cs
dc.coverage.volume16cs
dc.date.accessioned2023-07-21T06:53:46Z
dc.date.available2023-07-21T06:53:46Z
dc.date.issued2023-04-26cs
dc.description.abstractThis paper deals with a study of additively manufactured (by the Selective Laser Melting, SLM, method) and conventionally produced AISI 316L stainless steel and their comparison. With the intention to enhance the performance of the workpieces, each material was post-processed via hot rotary swaging under a temperature of 900 °C. The samples of each particular material were analysed regarding porosity, microhardness, high cycle fatigue, and microstructure. The obtained data has shown a significant reduction in the residual porosity and the microhardness increase to 310 HV in the sample after the hot rotary swaging. Based on the acquired data, the sample produced via SLM and post-processed by hot rotary swaging featured higher fatigue resistance compared to conventionally produced samples where the stress was set to 540 MPa. The structure of the printed samples changed from the characteristic melting pools to a structure with a lower average grain size accompanied by a decrease of a high fraction of high-angle grain boundaries and higher geometrically necessary dislocation density. Specifically, the grain size decreased from the average diameters of more than 20 µm to 3.9 µm and 4.1 µm for the SLM and conventionally prepared samples, respectively. In addition, the presented research has brought in the material constants of the Hensel-Spittel formula adapted to predict the hot flow stress evolution of the studied steel with respect to its 3D printed state.en
dc.formattextcs
dc.format.extent1-21cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationMaterials . 2023, vol. 16, issue 9, p. 1-21.en
dc.identifier.doi10.3390/ma16093400cs
dc.identifier.issn1996-1944cs
dc.identifier.other183938cs
dc.identifier.researcherid0000-0003-3781-692Xcs
dc.identifier.researcherid0000-0001-6451-6813cs
dc.identifier.scopus57202956673cs
dc.identifier.urihttp://hdl.handle.net/11012/213570
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofMaterialscs
dc.relation.urihttps://www.mdpi.com/1996-1944/16/9/3400cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1996-1944/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subject316L steelen
dc.subjectselective laser meltingen
dc.subjecthot compression testingen
dc.subjecthot rotary swagingen
dc.subjecthigh cycle fatigueen
dc.subjectmicrostructureen
dc.titleHigh Cycle Fatigue Behaviour of 316L Stainless Steel Produced via Selective Laser Melting Method and Post Processed by Hot Rotary Swagingen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-183938en
sync.item.dbtypeVAVen
sync.item.insts2023.07.24 08:54:52en
sync.item.modts2023.07.24 08:15:46en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. ÚST-odbor technologie obráběnícs
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. ÚST-odbor technologie tváření kovů a plastůcs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
materials1603400v3 2.pdf
Size:
9.05 MB
Format:
Adobe Portable Document Format
Description:
materials1603400v3 2.pdf