An Investigation of Viscous Torque Loss in Ball Bearing Operating in Various Liquids

Loading...
Thumbnail Image

Authors

Dobrovolný, Martin
Habán, Vladimír
Tancjurová, Jana
Zbavitel, Jan

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Altmetrics

Abstract

The limited functionality of seals that are used in hydraulic machines to prevent the liquid from leaking into the bearings may result in decrease in machine efficiency and reliability and may cause an accident of the whole hydraulic machine. However, not every damage of seals must result in a shutdown of the whole machine. In case of partially or fully flooded bearings, the machine can temporarily operate with significantly increased input power and with lower efficiency. Such a limited operation of the machine shortens its lifetime and is accompanied by the presence of torque loss on the shaft. The measurement of torque loss can be helpful during the design process of new machines as well as for an analysis of hydraulic losses and efficiency of prototypes. Moreover, the real-time measurement of torque loss can be used for remote online monitoring of hydraulic machines. The aim of this paper is to present primarily an experimental investigation of the viscous torque loss for ball bearings submerged into liquid. The CFD simulation is also included to distribute the total torque loss between the hub and the bearing. The main goal is to modify the drag coefficient, respectively the friction loss coefficient in SKF's and Palgrem's empirical model. The new coefficients may provide a prediction of torque loss in the fully flooded bearings which is not possible with existing models. The torque loss characteristics are determined for specific ball bearings too. In contradiction to partially flooded bearing situation, it is obvious from a experiment, that some coefficients in Palgrem's model and SKF model are dependent on revolutions when bearings are fully flooded. The experimental investigation of viscous torque loss are carried out for various types of ball bearings, all fully submerged into two various liquids, i.e., oil and water.
The limited functionality of seals that are used in hydraulic machines to prevent the liquid from leaking into the bearings may result in decrease in machine efficiency and reliability and may cause an accident of the whole hydraulic machine. However, not every damage of seals must result in a shutdown of the whole machine. In case of partially or fully flooded bearings, the machine can temporarily operate with significantly increased input power and with lower efficiency. Such a limited operation of the machine shortens its lifetime and is accompanied by the presence of torque loss on the shaft. The measurement of torque loss can be helpful during the design process of new machines as well as for an analysis of hydraulic losses and efficiency of prototypes. Moreover, the real-time measurement of torque loss can be used for remote online monitoring of hydraulic machines. The aim of this paper is to present primarily an experimental investigation of the viscous torque loss for ball bearings submerged into liquid. The CFD simulation is also included to distribute the total torque loss between the hub and the bearing. The main goal is to modify the drag coefficient, respectively the friction loss coefficient in SKF's and Palgrem's empirical model. The new coefficients may provide a prediction of torque loss in the fully flooded bearings which is not possible with existing models. The torque loss characteristics are determined for specific ball bearings too. In contradiction to partially flooded bearing situation, it is obvious from a experiment, that some coefficients in Palgrem's model and SKF model are dependent on revolutions when bearings are fully flooded. The experimental investigation of viscous torque loss are carried out for various types of ball bearings, all fully submerged into two various liquids, i.e., oil and water.

Description

Citation

Water. 2021, vol. 13, issue 10, p. 1-10.
https://doi.org/10.3390/w13101414

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO