Cube-root-subgroups of SL_2 over imaginary quadratic integers
dc.contributor.author | Kureš, Miroslav | cs |
dc.coverage.issue | 2 | cs |
dc.coverage.volume | 29 | cs |
dc.date.issued | 2021-09-01 | cs |
dc.description.abstract | All cube roots of the identity in the special linear group of $2\times 2$-matrices with entries in the ring of integers in $\mathbb Q[\sqrt{d}]$ are described. These matrices generate subgroups of the third order; it is shown that such subgroups may contain non-elementary matrices in the sense of P. M. Cohn. All this is viewed with respect to possible applications in lattice cryptography. | en |
dc.format | text | cs |
dc.format.extent | 227-240 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | Computer Science Journal of Moldova. 2021, vol. 29, issue 2, p. 227-240. | en |
dc.identifier.issn | 1561-4042 | cs |
dc.identifier.orcid | 0000-0001-6222-389X | cs |
dc.identifier.other | 172038 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/201633 | |
dc.language.iso | en | cs |
dc.publisher | Vladimir Andrunakievich Institute of Mathematics and Computer Science | cs |
dc.relation.ispartof | Computer Science Journal of Moldova | cs |
dc.relation.uri | http://www.math.md/publications/csjm/issues/v29-n2/13338/ | cs |
dc.rights | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/1561-4042/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | cs |
dc.subject | imaginary quadratic field | en |
dc.subject | ring of integers | en |
dc.subject | non-elementary matrices | en |
dc.subject | special linear group | en |
dc.subject | public key cryptography | en |
dc.subject | lattice based cryptosystems | en |
dc.title | Cube-root-subgroups of SL_2 over imaginary quadratic integers | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-172038 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2025.02.03 15:48:52 | en |
sync.item.modts | 2025.01.17 16:48:12 | en |
thesis.grantor | Vysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav matematiky | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- v29n2pp227240.pdf
- Size:
- 142.84 KB
- Format:
- Adobe Portable Document Format
- Description:
- v29n2pp227240.pdf