Sizing up the regions of unique minima in the least squares nonlinear regression

Loading...
Thumbnail Image
Date
2018
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematiky
Altmetrics
Abstract
In nonlinear regression analysis, the residual sum of squares may possess multiple local minima. This complicates finding the global minimum and adversely affects reliability of the relevant statistical methods. Identifying and sizing up the regions of a readily identifiable global minimum (RIGM) is therefore of both theo- retical and practical interest. This paper addresses the issue by using equidistant function previously introduced by the first two co-authors of this paper.
Description
Citation
Mathematics for Applications. 2018 vol. 7, č. 1, s. 41-52. ISSN 1805-3629
http://ma.fme.vutbr.cz/archiv/7_1/ma_7_1_4_khinkis_et_al_final.pdf
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
© Vysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematiky
Collections
Citace PRO