Detekce Útoků v Síťovém Provozu

Loading...
Thumbnail Image
Date
ORCID
Mark
P
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně. Fakulta informačních technologií
Abstract
Tato práce se zabývá problematikou anomální detekce síťových útoků s využitím technik strojového učení. Nejdříve jsou prezentovány state-of-the-art datové kolekce určené pro ověření funkčnosti systémů detekce útoků a také práce, které používají statistickou analýzu a techniky strojového učení pro nalezení síťových útoků. V další části práce je prezentován návrh vlastní kolekce metrik nazývaných Advanced Security Network Metrics (ASNM), který je součástí konceptuálního automatického systému pro detekci průniků (AIPS). Dále jsou navrženy a diskutovány dva různé přístupy k obfuskaci - tunelování a modifikace síťových charakteristik - sloužících pro úpravu provádění útoků. Experimenty ukazují, že použité obfuskace jsou schopny předejít odhalení útoků pomocí klasifikátoru využívajícího metriky ASNM. Na druhé straně zahrnutí těchto obfuskací do trénovacího procesu klasifikátoru může zlepšit jeho detekční schopnosti. Práce také prezentuje alternativní pohled na obfuskační techniky modifikující síťové charakteristiky a demonstruje jejich použití jako aproximaci síťového normalizéru založenou na vhodných trénovacích datech.
The thesis deals with anomaly based network intrusion detection which utilize machine learning approaches. First, state-of-the-art datasets intended for evaluation of intrusion detection systems are described as well as the related works employing statistical analysis and machine learning techniques for network intrusion detection. In the next part, original feature set, Advanced Security Network Metrics (ASNM) is presented, which is part of conceptual automated network intrusion detection system, AIPS. Then, tunneling obfuscation techniques as well as non-payload-based ones are proposed to apply as modifications of network attack execution. Experiments reveal that utilized obfuscations are able to avoid attack detection by supervised classifier using ASNM features, and their utilization can strengthen the detection performance of the classifier by including them into the training process of the classifier. The work also presents an alternative view on the non-payload-based obfuscation techniques, and demonstrates how they may be employed as a training data driven approximation of network traffic normalizer.
Description
Citation
HOMOLIAK, I. Detekce Útoků v Síťovém Provozu [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. .
Document type
Document version
Date of access to the full text
Language of document
en
Study field
Výpočetní technika a informatika
Comittee
Date of acceptance
Defence
Result of defence
práce byla úspěšně obhájena
Document licence
Standardní licenční smlouva - přístup k plnému textu bez omezení
DOI
Collections
Citace PRO