Coherence gate manipulation for enhanced imaging through scattering media by non-ballistic light in partially coherent interferometric systems

Loading...
Thumbnail Image

Authors

Ďuriš, Miroslav
Chmelík, Radim

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

The Optical Society
Altmetrics

Abstract

Coherence gating is typically exploited for imaging through disordered media by least-scattered (ballistic) light. Ballistic light-based approaches produce clear images only when the proportion of ballistic to multiply scattered (non-ballistic) light is relatively high. To overcome this limitation, we counterintuitively utilize the coherence gate to image by the non-ballistic light, enabling us to retrieve information missing in the ballistic image. We show that non-ballistic images acquired by transversal coherence gate shifting have image quality and spatial resolution comparable to the ballistic image. Combining images for different coherence gate positions, we synthesize an image of quality superior to ballistic light approaches. We experimentally demonstrate our concept on quantitative phase imaging through biological tissue.
Coherence gating is typically exploited for imaging through disordered media by least-scattered (ballistic) light. Ballistic light-based approaches produce clear images only when the proportion of ballistic to multiply scattered (non-ballistic) light is relatively high. To overcome this limitation, we counterintuitively utilize the coherence gate to image by the non-ballistic light, enabling us to retrieve information missing in the ballistic image. We show that non-ballistic images acquired by transversal coherence gate shifting have image quality and spatial resolution comparable to the ballistic image. Combining images for different coherence gate positions, we synthesize an image of quality superior to ballistic light approaches. We experimentally demonstrate our concept on quantitative phase imaging through biological tissue.

Description

Citation

OPTICS LETTERS. 2021, vol. 46, issue 18, p. 4486-4489.
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-46-18-4486

Document type

Peer-reviewed

Document version

Accepted version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Citace PRO