Global Sensitivity Analysis and Surrogate Models for Evaluation of Limit States in Steel Truss Structures
Loading...
Date
Authors
Kala, Zdeněk
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
North Atlantic University Union (NAUN)
ORCID
Altmetrics
Abstract
This article presents the global sensitivity analysis of the serviceability limit state of a steel truss using Monte Carlo simulations. The focus is on the probabilistic assessment of deflection, with failure probability defined as the likelihood of exceeding the deflection limit. Deflection is computed using the beam finite element method. A surrogate model is introduced to reduce computational costs. By integrating the surrogate and original models, significant CPU cost reductions are achieved. Furthermore, classical Sobol sensitivity analysis is used to examine the model outputs and analyze the significance of member loading and stiffness on the deflection. This study advances the use of surrogate models in global sensitivity analysis, enhancing computational efficiency and the understanding of interactions between input variables in the reliability assessment of steel truss structures.
This article presents the global sensitivity analysis of the serviceability limit state of a steel truss using Monte Carlo simulations. The focus is on the probabilistic assessment of deflection, with failure probability defined as the likelihood of exceeding the deflection limit. Deflection is computed using the beam finite element method. A surrogate model is introduced to reduce computational costs. By integrating the surrogate and original models, significant CPU cost reductions are achieved. Furthermore, classical Sobol sensitivity analysis is used to examine the model outputs and analyze the significance of member loading and stiffness on the deflection. This study advances the use of surrogate models in global sensitivity analysis, enhancing computational efficiency and the understanding of interactions between input variables in the reliability assessment of steel truss structures.
This article presents the global sensitivity analysis of the serviceability limit state of a steel truss using Monte Carlo simulations. The focus is on the probabilistic assessment of deflection, with failure probability defined as the likelihood of exceeding the deflection limit. Deflection is computed using the beam finite element method. A surrogate model is introduced to reduce computational costs. By integrating the surrogate and original models, significant CPU cost reductions are achieved. Furthermore, classical Sobol sensitivity analysis is used to examine the model outputs and analyze the significance of member loading and stiffness on the deflection. This study advances the use of surrogate models in global sensitivity analysis, enhancing computational efficiency and the understanding of interactions between input variables in the reliability assessment of steel truss structures.
Description
Keywords
Citation
International Journal of Mechanics. 2024, vol. 18, issue 1, p. 27-35.
https://npublications.com/journals/mechanics/2024/a102003-005(2024).pdf
https://npublications.com/journals/mechanics/2024/a102003-005(2024).pdf
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International

0000-0002-6873-3855 