Some useful tools in the study of nonlinear elliptic problems

Loading...
Thumbnail Image

Authors

Papageorgiou, Nikolaos S.
Radulescu, Vicentiu

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Altmetrics

Abstract

This paper gives an overview of some basic aspects concerning the qualitative analysis of nonlinear, nonhomogeneous elliptic problems. We are concerned with two classes of elliptic equations with Dirichlet boundary condition. The first problem is driven by a general nonhomogeneous differential operator, which includes several usual operators (such as the (p,q)-Laplace operator introduced by P. Marcellini). Next, we focus on differential operators with unbalanced growth in the nonautonomous case. Our analysis will point out some relevant differences between balanced and unbalanced growth problems. The presentation is done in the context of Dirichlet problems but a similar analysis can be developed for other boundary conditions, such as Neumann or Robin.
This paper gives an overview of some basic aspects concerning the qualitative analysis of nonlinear, nonhomogeneous elliptic problems. We are concerned with two classes of elliptic equations with Dirichlet boundary condition. The first problem is driven by a general nonhomogeneous differential operator, which includes several usual operators (such as the (p,q)-Laplace operator introduced by P. Marcellini). Next, we focus on differential operators with unbalanced growth in the nonautonomous case. Our analysis will point out some relevant differences between balanced and unbalanced growth problems. The presentation is done in the context of Dirichlet problems but a similar analysis can be developed for other boundary conditions, such as Neumann or Robin.

Description

Citation

EXPOSITIONES MATHEMATICAE. 2024, vol. 42, issue 6, p. 1-27.
https://www.sciencedirect.com/science/article/pii/S0723086924000835

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Citace PRO