An inverse problem for a double phase implicit obstacle problem with multivalued terms

dc.contributor.authorZeng, Shengdacs
dc.contributor.authorBai, Yunrucs
dc.contributor.authorRadulescu, Vicentiucs
dc.contributor.authorWinkert, Patrickcs
dc.coverage.issue30cs
dc.coverage.volume29cs
dc.date.issued2023-04-27cs
dc.description.abstractIn this paper, we study an inverse problem of estimating three discontinuous parameters in a double phase implicit obstacle problem with multivalued terms and mixed boundary conditions which is formulated by a regularized optimal control problem. Under very general assumptions, we introduce a multivalued function called a parameter-to-solution map which admits weakly compact values. Then, by employing the Aubin-Cellina convergence theorem and the theory of nonsmooth analysis, we prove that the parameter-to-solution map is bounded and continuous in the sense of Kuratowski. Finally, a generalized regularization framework for the inverse problem is developed and a new existence theorem is provided.en
dc.description.abstractIn this paper, we study an inverse problem of estimating three discontinuous parameters in a double phase implicit obstacle problem with multivalued terms and mixed boundary conditions which is formulated by a regularized optimal control problem. Under very general assumptions, we introduce a multivalued function called a parameter-to-solution map which admits weakly compact values. Then, by employing the Aubin-Cellina convergence theorem and the theory of nonsmooth analysis, we prove that the parameter-to-solution map is bounded and continuous in the sense of Kuratowski. Finally, a generalized regularization framework for the inverse problem is developed and a new existence theorem is provided.en
dc.formattextcs
dc.format.extent1-30cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS. 2023, vol. 29, issue 30, p. 1-30.en
dc.identifier.doi10.1051/cocv/2023022cs
dc.identifier.issn1292-8119cs
dc.identifier.orcid0000-0003-4615-5537cs
dc.identifier.other183936cs
dc.identifier.researcheridA-1503-2012cs
dc.identifier.scopus35608668800cs
dc.identifier.urihttp://hdl.handle.net/11012/244331
dc.language.isoencs
dc.relation.ispartofESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONScs
dc.relation.urihttps://www-webofscience-com.ezproxy.lib.vutbr.cz/wos/woscc/full-record/WOS:000977790200001cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1292-8119/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectClarke subdifferentialen
dc.subjectdiscontinuous parameteren
dc.subjectdouble phase operatoren
dc.subjectimplicit obstacle problemen
dc.subjectinverse problemen
dc.subjectoptimal controlen
dc.subjectSteklov eigenvalueen
dc.subjectClarke subdifferential
dc.subjectdiscontinuous parameter
dc.subjectdouble phase operator
dc.subjectimplicit obstacle problem
dc.subjectinverse problem
dc.subjectoptimal control
dc.subjectSteklov eigenvalue
dc.titleAn inverse problem for a double phase implicit obstacle problem with multivalued termsen
dc.title.alternativeAn inverse problem for a double phase implicit obstacle problem with multivalued termsen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-183936en
sync.item.dbtypeVAVen
sync.item.insts2025.10.14 14:10:18en
sync.item.modts2025.10.14 10:16:37en
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav matematikycs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
cocv220165.pdf
Size:
543.56 KB
Format:
Adobe Portable Document Format
Description:
file cocv220165.pdf