An inverse problem for a double phase implicit obstacle problem with multivalued terms
| dc.contributor.author | Zeng, Shengda | cs |
| dc.contributor.author | Bai, Yunru | cs |
| dc.contributor.author | Radulescu, Vicentiu | cs |
| dc.contributor.author | Winkert, Patrick | cs |
| dc.coverage.issue | 30 | cs |
| dc.coverage.volume | 29 | cs |
| dc.date.issued | 2023-04-27 | cs |
| dc.description.abstract | In this paper, we study an inverse problem of estimating three discontinuous parameters in a double phase implicit obstacle problem with multivalued terms and mixed boundary conditions which is formulated by a regularized optimal control problem. Under very general assumptions, we introduce a multivalued function called a parameter-to-solution map which admits weakly compact values. Then, by employing the Aubin-Cellina convergence theorem and the theory of nonsmooth analysis, we prove that the parameter-to-solution map is bounded and continuous in the sense of Kuratowski. Finally, a generalized regularization framework for the inverse problem is developed and a new existence theorem is provided. | en |
| dc.description.abstract | In this paper, we study an inverse problem of estimating three discontinuous parameters in a double phase implicit obstacle problem with multivalued terms and mixed boundary conditions which is formulated by a regularized optimal control problem. Under very general assumptions, we introduce a multivalued function called a parameter-to-solution map which admits weakly compact values. Then, by employing the Aubin-Cellina convergence theorem and the theory of nonsmooth analysis, we prove that the parameter-to-solution map is bounded and continuous in the sense of Kuratowski. Finally, a generalized regularization framework for the inverse problem is developed and a new existence theorem is provided. | en |
| dc.format | text | cs |
| dc.format.extent | 1-30 | cs |
| dc.format.mimetype | application/pdf | cs |
| dc.identifier.citation | ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS. 2023, vol. 29, issue 30, p. 1-30. | en |
| dc.identifier.doi | 10.1051/cocv/2023022 | cs |
| dc.identifier.issn | 1292-8119 | cs |
| dc.identifier.orcid | 0000-0003-4615-5537 | cs |
| dc.identifier.other | 183936 | cs |
| dc.identifier.researcherid | A-1503-2012 | cs |
| dc.identifier.scopus | 35608668800 | cs |
| dc.identifier.uri | http://hdl.handle.net/11012/244331 | |
| dc.language.iso | en | cs |
| dc.relation.ispartof | ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS | cs |
| dc.relation.uri | https://www-webofscience-com.ezproxy.lib.vutbr.cz/wos/woscc/full-record/WOS:000977790200001 | cs |
| dc.rights | Creative Commons Attribution 4.0 International | cs |
| dc.rights.access | openAccess | cs |
| dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/1292-8119/ | cs |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
| dc.subject | Clarke subdifferential | en |
| dc.subject | discontinuous parameter | en |
| dc.subject | double phase operator | en |
| dc.subject | implicit obstacle problem | en |
| dc.subject | inverse problem | en |
| dc.subject | optimal control | en |
| dc.subject | Steklov eigenvalue | en |
| dc.subject | Clarke subdifferential | |
| dc.subject | discontinuous parameter | |
| dc.subject | double phase operator | |
| dc.subject | implicit obstacle problem | |
| dc.subject | inverse problem | |
| dc.subject | optimal control | |
| dc.subject | Steklov eigenvalue | |
| dc.title | An inverse problem for a double phase implicit obstacle problem with multivalued terms | en |
| dc.title.alternative | An inverse problem for a double phase implicit obstacle problem with multivalued terms | en |
| dc.type.driver | article | en |
| dc.type.status | Peer-reviewed | en |
| dc.type.version | publishedVersion | en |
| sync.item.dbid | VAV-183936 | en |
| sync.item.dbtype | VAV | en |
| sync.item.insts | 2025.10.14 14:10:18 | en |
| sync.item.modts | 2025.10.14 10:16:37 | en |
| thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav matematiky | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- cocv220165.pdf
- Size:
- 543.56 KB
- Format:
- Adobe Portable Document Format
- Description:
- file cocv220165.pdf
