In-situ self-assembly of silica nanoparticles into microfibers with potential to reinforce polymers

dc.contributor.authorZárybnická, Kláracs
dc.contributor.authorOndreáš, Františekcs
dc.contributor.authorLepcio, Petrcs
dc.contributor.authorChen, Chaocs
dc.contributor.authorJančář, Josefcs
dc.date.accessioned2021-05-04T10:54:20Z
dc.date.available2021-05-04T10:54:20Z
dc.date.issued2020-10-01cs
dc.description.abstractSilica nanosphere with a diameter of 10–15 nm were organized into fibers with a lenght of 15 mm and an aspect ratio of 100 by self-assembly in 1,4-dioxane. Dioxane causes a positive zeta potential on the silica surface thus silica in dioxane may behave as an acceptor (base catalyzer) causing decomposition of dioxane to acetaldehyde and its consequent polymerization into oligomer or polymer (polyoxyethylene) chains that bond the particles together. This process was proved using a thermogravimetric analysis which showed that the amount of polymerized dioxane is in the rang 2–3.5 wt. %. Composition of the polymerized dioxane was elucidated employing FTIR. The formation of fibrillar structures was driven kinetically during solidification. The size of the fibers was controlled by the drying rate. Fast-drying results in longer and thinner fibers. Nanosilica fibers can also be formed in a polymer matrix (e.g., polycarbonate) via the solvent-casting method. Formation of fibers in-situ in a soft rubber polymer matrix in one-step processing can provide a polymer reinforcement at two hierarchical levels – at the nanoscale by immobilizing polymer chains due to the presence of nanoparticles and the microscale by strain transfer to the fibers. Elastic modulus of the fibers was determined by wrinkling technique by compression on the elastic surface and by thermal treatment in the polycarbonate matrix. Both techniques showed modulus 43–46 MPa.en
dc.formattextcs
dc.format.extent673-678cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationProceedings 11th International Conference on Nanomaterials - Research & Application. 2020, p. 673-678.en
dc.identifier.doi10.37904/nanocon.2019.8489cs
dc.identifier.isbn978-80-87294-95-6cs
dc.identifier.other160696cs
dc.identifier.urihttp://hdl.handle.net/11012/196679
dc.language.isoencs
dc.publisherTangercs
dc.relation.ispartofProceedings 11th International Conference on Nanomaterials - Research & Applicationcs
dc.relation.urihttps://www.confer.cz/nanocon/2019/101-in-situ-self-assembly-of-silica-nanoparticles-into-microfibers-with-potential-to-reinforce-polymerscs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectSelf-assemblyen
dc.subjectfibersen
dc.subjectnanosilicaen
dc.subjectdioxaneen
dc.titleIn-situ self-assembly of silica nanoparticles into microfibers with potential to reinforce polymersen
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-160696en
sync.item.dbtypeVAVen
sync.item.insts2021.05.04 12:54:20en
sync.item.modts2021.05.04 12:14:56en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Pokročilé polymerní materiály a kompozitcs
thesis.grantorVysoké učení technické v Brně. Fakulta chemická. Ústav chemie materiálůcs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
nanocon2019_zarybnicka_nanocon.pdf
Size:
981.52 KB
Format:
Adobe Portable Document Format
Description:
nanocon2019_zarybnicka_nanocon.pdf