Overdoping effect with Zr and Hf on the oxidation behaviour of FeCrAl-Hf by means of Atom Probe Tomography

Loading...
Thumbnail Image

Date

Authors

Daradkeh, Samer I.
Recalde, Oscar
Mousa, Marwan S.
Sobola, Dinara

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií

ORCID

Altmetrics

Abstract

The study investigated the oxidation behaviour and grain boundary diffusion of minor/major elements of FeCrAl alloys, doped with over-critical concentrations of reactive elements (REs) Zr and Hf. While the formation of ?-Al2O3 scale on these alloys is conventionally attributed to inward oxygen transport along grain boundaries, this research proposes that metal ion outward diffusion also contributes to the development of oxide scales and their microstructural characteristics. Samples were analyzed after thermal exposure at 1100 °C using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atom probe tomography (APT). Results revealed increased oxide growth, deeper internal oxidation, and RE-oxide formation near and at oxide grain boundaries due to enhanced inward and outward diffusion resulting from overdoping. The impact of overdoping varied with RE type and concentration, influenced by solubility, ionic size, and electronic structure of alumina. Notably, Zr-doped samples maintained alumina adhesion to the alloy after thermal exposure, whereas severe spallation occurred in Hf-doped samples.

Description

Citation

Proceedings II of the 30st Conference STUDENT EEICT 2024: Selected papers. s. 176-181. ISBN 978-80-214-6230-4
https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2024_sbornik_2.pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Citace PRO