Quantitative phase imaging through scattering media by means of coherence-controlled holographic microscope

Loading...
Thumbnail Image

Authors

Kollárová, Věra
Čolláková, Jana
Dostál, Zbyněk
Veselý, Pavel
Chmelík, Radim

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

SPIE
Altmetrics

Abstract

A coherence-controlled holographic microscope (CCHM) enables quantitative phase imaging with coherent as well as incoherent illumination. The low spatially coherent light induces a coherence gating effect, which makes observation of samples possible also through scattering media. The paper describes theoretically and simulates numerically imaging of a two-dimensional object through a static scattering layer by means of CCHM, with the main focus on the quantitative phase imaging quality. The authors have investigated both strongly and weakly scattering media characterized by different amounts of ballistic and diffuse light. It is demonstrated that the phase information can be revealed also for the case of the static, strongly scattering layer. The dependence of the quality of imaging process on the spatial light coherence is demonstrated. The theoretical calculations and numerical simulations are supported by experimental data gained with a model phase object, as well as living carcinoma cells treated in an optically turbid emulsion
A coherence-controlled holographic microscope (CCHM) enables quantitative phase imaging with coherent as well as incoherent illumination. The low spatially coherent light induces a coherence gating effect, which makes observation of samples possible also through scattering media. The paper describes theoretically and simulates numerically imaging of a two-dimensional object through a static scattering layer by means of CCHM, with the main focus on the quantitative phase imaging quality. The authors have investigated both strongly and weakly scattering media characterized by different amounts of ballistic and diffuse light. It is demonstrated that the phase information can be revealed also for the case of the static, strongly scattering layer. The dependence of the quality of imaging process on the spatial light coherence is demonstrated. The theoretical calculations and numerical simulations are supported by experimental data gained with a model phase object, as well as living carcinoma cells treated in an optically turbid emulsion

Description

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 3.0 Unported
Citace PRO