Quantitative phase imaging through scattering media by means of coherence-controlled holographic microscope
Loading...
Files
Date
Authors
Kollárová, Věra
Čolláková, Jana
Dostál, Zbyněk
Veselý, Pavel
Chmelík, Radim
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
SPIE
Altmetrics
Abstract
A coherence-controlled holographic microscope (CCHM) enables quantitative phase imaging with coherent as well as incoherent illumination. The low spatially coherent light induces a coherence gating effect, which makes observation of samples possible also through scattering media. The paper describes theoretically and simulates numerically imaging of a two-dimensional object through a static scattering layer by means of CCHM, with the main focus on the quantitative phase imaging quality. The authors have investigated both strongly and weakly scattering media characterized by different amounts of ballistic and diffuse light. It is demonstrated that the phase information can be revealed also for the case of the static, strongly scattering layer. The dependence of the quality of imaging process on the spatial light coherence is demonstrated. The theoretical calculations and numerical simulations are supported by experimental data gained with a model phase object, as well as living carcinoma cells treated in an optically turbid emulsion
A coherence-controlled holographic microscope (CCHM) enables quantitative phase imaging with coherent as well as incoherent illumination. The low spatially coherent light induces a coherence gating effect, which makes observation of samples possible also through scattering media. The paper describes theoretically and simulates numerically imaging of a two-dimensional object through a static scattering layer by means of CCHM, with the main focus on the quantitative phase imaging quality. The authors have investigated both strongly and weakly scattering media characterized by different amounts of ballistic and diffuse light. It is demonstrated that the phase information can be revealed also for the case of the static, strongly scattering layer. The dependence of the quality of imaging process on the spatial light coherence is demonstrated. The theoretical calculations and numerical simulations are supported by experimental data gained with a model phase object, as well as living carcinoma cells treated in an optically turbid emulsion
A coherence-controlled holographic microscope (CCHM) enables quantitative phase imaging with coherent as well as incoherent illumination. The low spatially coherent light induces a coherence gating effect, which makes observation of samples possible also through scattering media. The paper describes theoretically and simulates numerically imaging of a two-dimensional object through a static scattering layer by means of CCHM, with the main focus on the quantitative phase imaging quality. The authors have investigated both strongly and weakly scattering media characterized by different amounts of ballistic and diffuse light. It is demonstrated that the phase information can be revealed also for the case of the static, strongly scattering layer. The dependence of the quality of imaging process on the spatial light coherence is demonstrated. The theoretical calculations and numerical simulations are supported by experimental data gained with a model phase object, as well as living carcinoma cells treated in an optically turbid emulsion
Description
Keywords
quantitative phase imaging , digital holography , microscopy , coherence-controlled holographic microscopy , imaging through scattering media , imaging through turbid media. , quantitative phase imaging , digital holography , microscopy , coherence-controlled holographic microscopy , imaging through scattering media , imaging through turbid media.
Citation
JOURNAL OF BIOMEDICAL OPTICS. 2015, vol. 20, issue 11, p. 1112016-1-111206-8.
https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics/volume-20/issue-11/111206/Quantitative-phase-imaging-through-scattering-media-by-means-of-coherence/10.1117/1.JBO.20.11.111206.full
https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics/volume-20/issue-11/111206/Quantitative-phase-imaging-through-scattering-media-by-means-of-coherence/10.1117/1.JBO.20.11.111206.full
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Creative Commons Attribution 3.0 Unported

0000-0002-0260-8971 