Computational and experimental investigation of thermally auxetic multi-metal lattice structures produced by laser powder bed fusion

dc.contributor.authorČervinek, Ondřejcs
dc.contributor.authorTucker, Michael Robertcs
dc.contributor.authorKoutný, Danielcs
dc.contributor.authorBambach, Markuscs
dc.coverage.issue1cs
dc.coverage.volume19cs
dc.date.accessioned2024-12-10T13:55:44Z
dc.date.available2024-12-10T13:55:44Z
dc.date.issued2024-09-11cs
dc.description.abstractCommunication antennas and optical systems of space-borne satellites require highly accurate relative positioning of components despite large variations in ambient temperature. As a potential solution, additive manufacturing technologies, such as laser powder bed fusion, enable the production of metamaterial structures with complex local geometries that can be designed to achieve the desired thermal and mechanical behaviours. Recent advances enable the processing of multiple materials within a single build to achieve composite structural properties that are infeasible using conventional single materials. This study investigates the potential of tailoring the structural thermal expansion properties of several configurations of a multi-metal re-entrant lattice structure made of stainless steel 316L and the copper alloy CuCr1Zr. Unit cells and lattice structure segments with theoretical coefficients of thermal expansion ranging from 1.64×105 °C1 to 2.51×105 °C1 (16% more than CuCr1Zr) are evaluated by finite element analysis and validated experimentally. Imperfections related to the manufacturing process are shown to have a significant effect on net expansion. The results indicate good agreement despite the imperfections. The study demonstrates the feasibility of designing and fabricating metal lattice structures for a specific thermal expansion within, as well as above and below, the range of thermal expansion of the parent materials.en
dc.formattextcs
dc.format.extent1-26cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationVirtual and Physical Prototyping. 2024, vol. 19, issue 1, p. 1-26.en
dc.identifier.doi10.1080/17452759.2024.2396069cs
dc.identifier.issn1745-2759cs
dc.identifier.orcid0000-0003-1870-7410cs
dc.identifier.orcid0000-0002-5384-8668cs
dc.identifier.other189590cs
dc.identifier.researcheridT-4510-2019cs
dc.identifier.researcheridF-8576-2012cs
dc.identifier.scopus23988874000cs
dc.identifier.urihttps://hdl.handle.net/11012/249761
dc.language.isoencs
dc.publisherTaylor & Francis Groupcs
dc.relation.ispartofVirtual and Physical Prototypingcs
dc.relation.urihttps://www.tandfonline.com/doi/epdf/10.1080/17452759.2024.2396069cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1745-2759/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectLaser powder bed fusionen
dc.subjectfinite element analysisen
dc.subjectmulti-metal compositeen
dc.subjectauxetic lattice structureen
dc.subjectthermal loadingen
dc.subjectdigital image correlationen
dc.titleComputational and experimental investigation of thermally auxetic multi-metal lattice structures produced by laser powder bed fusionen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-189590en
sync.item.dbtypeVAVen
sync.item.insts2024.12.10 14:55:44en
sync.item.modts2024.12.09 11:32:02en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav konstruovánícs
thesis.grantorVysoké učení technické v Brně. . Eidgenössische Technische Hochschule Zürichcs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2024Cervinek.pdf
Size:
3.48 MB
Format:
Adobe Portable Document Format
Description:
file 2024Cervinek.pdf