How to Achieve High Spatial Resolution in Organic Optobioelectronic Devices?

dc.contributor.authorFabbri, Lucacs
dc.contributor.authorMigliaccio, Ludovicocs
dc.contributor.authorĹ irvinskyt, Aleksandracs
dc.contributor.authorRizzi, Giacomocs
dc.contributor.authorBondi, Lucacs
dc.contributor.authorTamarozzi, Cristianocs
dc.contributor.authorWeber, Stefan A.L.cs
dc.contributor.authorFraboni, Beatricecs
dc.contributor.authorGlowacki, Eric Danielcs
dc.contributor.authorCramer, Tobiascs
dc.coverage.issue9cs
dc.coverage.volume12cs
dc.date.accessioned2025-05-16T10:55:53Z
dc.date.available2025-05-16T10:55:53Z
dc.date.issued2025-05-01cs
dc.description.abstractLight activated local stimulation and sensing of biological cells hold great promise for minimally invasive bioelectronic interfaces. Organic semiconductors are particularly appealing for these applications due to their optoelectronic properties and biocompatibility. This study examines the material properties necessary to localize the optical excitation and achieve optoelectronic transduction with high spatial resolution. Using photovoltage and photocurrent microscopy, we investigate spatial broadening of local optical excitation in Phthalocyanine/3,4,9,10-Perylenetetracarboxylic diimide (H2PC/PTCDI) planar heterojunctions. Our measurements reveal that resolution losses are tied to the effective diffusion length of charge carriers at the heterojunction. For the H2PC/PTCDI heterojunction, the diffusion length is determined to be lambda d = 1.5 +/- 0.1 mu m, attributed to reduced carrier mobility. Covering the heterojunction with poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) improves the charge generation performance but increases the carrier diffusion length to lambda d = 7.0 +/- 0.3 mu m due to longer lifetime and higher carrier mobility. These findings elucidate the physical mechanisms underlying transduction and provide design principles for organic semiconductor devices aimed at achieving high efficiency and high spatial resolution for wireless and optically activated bioelectronics.en
dc.formattextcs
dc.format.extent1-9cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationAdvanced Materials Interfaces. 2025, vol. 12, issue 9, p. 1-9.en
dc.identifier.doi10.1002/admi.202400822cs
dc.identifier.issn2196-7350cs
dc.identifier.orcid0000-0002-0280-8017cs
dc.identifier.other197816cs
dc.identifier.urihttps://hdl.handle.net/11012/250922
dc.language.isoencs
dc.publisherWILEYcs
dc.relation.ispartofAdvanced Materials Interfacescs
dc.relation.urihttps://advanced.onlinelibrary.wiley.com/doi/10.1002/admi.202400822cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2196-7350/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectoptobioelectronicsen
dc.subjectorganic heterojunctionsen
dc.subjectphotocapacitorsen
dc.subjectphotocurrent microscopyen
dc.subjectphotovoltageen
dc.subjectspatial resolutionen
dc.titleHow to Achieve High Spatial Resolution in Organic Optobioelectronic Devices?en
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-197816en
sync.item.dbtypeVAVen
sync.item.insts2025.05.16 12:55:53en
sync.item.modts2025.05.16 12:33:24en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Bioelektronické materiály a systémycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2025Fabbri.pdf
Size:
3.42 MB
Format:
Adobe Portable Document Format
Description:
file 2025Fabbri.pdf