Mathematical modeling of the effect of stent construction during endoluminal IRE for recanalization of an occluded metal stent

Loading...
Thumbnail Image

Authors

Matkulčík, Peter
Hemzal, Martin
Rohan, Tomáš
Červinka, Dalibor
Novotná, Veronika
Nahum Goldberg, Shraga
Andrašina, Tomáš

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Taylor & Francis
Altmetrics

Abstract

Background: Intraluminal irreversible electroporation (IRE) can be used for recanalizing occluded metalstents. However, optimal IRE parameters for consistent effects across different stent designs remainunclear. The aim of this study was to simulate the process of stent recanalization in silico by employingfinite element analysis. Methods: A virtual model of an occluded biliary stent with an experimental 3-electrode IRE catheter was developed. Electric field distribution, temperature changes, and potential ablation volumes weresimulated across various parameters: IRE voltage (300 1300 V), stent wire width (0.1 0.5 mm) and stentmesh size (0.7 5.58 mm). Simulations incorporated five representative stent types commonly used inclinical practice. 685 unique simulations were conducted, analyzing 1162 unique values. Results: Higher voltages generally led to larger ablation zones and increased temperatures. Thinnerstent wires and larger mesh sizes also increased the extent of ablation zone. While in-stent ablation waslargely independent of stent design, out-of-stent ablation was significantly impacted by mesh size andtissue thickness between the stent and irreversible electroporation electrodes. Voltages above 1000 Vproduced significant thermal effects, with substantial volumes of tissue heated above 50 °C. Specificstent designs exhibited variations in maximum temperature (72.1 83.1 °C) and ablation volume(8.7 14.7 mm3). Conclusion: Tailored IRE protocols for different stent designs are required due to differences in in- andout-stent ablation volumes. High voltages (>1000 V) induce both thermal and nonthermal ablation mechanisms.
Background: Intraluminal irreversible electroporation (IRE) can be used for recanalizing occluded metalstents. However, optimal IRE parameters for consistent effects across different stent designs remainunclear. The aim of this study was to simulate the process of stent recanalization in silico by employingfinite element analysis. Methods: A virtual model of an occluded biliary stent with an experimental 3-electrode IRE catheter was developed. Electric field distribution, temperature changes, and potential ablation volumes weresimulated across various parameters: IRE voltage (300 1300 V), stent wire width (0.1 0.5 mm) and stentmesh size (0.7 5.58 mm). Simulations incorporated five representative stent types commonly used inclinical practice. 685 unique simulations were conducted, analyzing 1162 unique values. Results: Higher voltages generally led to larger ablation zones and increased temperatures. Thinnerstent wires and larger mesh sizes also increased the extent of ablation zone. While in-stent ablation waslargely independent of stent design, out-of-stent ablation was significantly impacted by mesh size andtissue thickness between the stent and irreversible electroporation electrodes. Voltages above 1000 Vproduced significant thermal effects, with substantial volumes of tissue heated above 50 °C. Specificstent designs exhibited variations in maximum temperature (72.1 83.1 °C) and ablation volume(8.7 14.7 mm3). Conclusion: Tailored IRE protocols for different stent designs are required due to differences in in- andout-stent ablation volumes. High voltages (>1000 V) induce both thermal and nonthermal ablation mechanisms.

Description

Citation

International journal of hyperthermia. 2025, vol. 42, issue 1, p. 1-14.
https://www.tandfonline.com/doi/metrics/10.1080/02656736.2025.2520362

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution-NonCommercial 4.0 International
Citace PRO