Topological solutions of η-generalized vector variational-like inequality problems

dc.contributor.authorKuma, Satish
dc.contributor.authorGupta, Ankit
dc.contributor.authorGarg, Pankaj Kumar
dc.contributor.authorRatna, Dev Sarma
dc.coverage.issue2cs
dc.coverage.volume10cs
dc.date.accessioned2022-02-21T12:10:30Z
dc.date.available2022-02-21T12:10:30Z
dc.date.issued2021cs
dc.description.abstractIn this paper, we discuss several variants of the η-generalized vector variational-like inequality problem and provide existence theorems for their solutions via a topological approach. Several topological concepts like compactness, closedness, net theory and admissibility of function space topology are used for obtaining the main results. Finally, we give some topological properties of the solution set so obtained.en
dc.formattextcs
dc.format.extent115-123cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationMathematics for Applications. 2021 vol. 10, č. 2, s. 115-123. ISSN 1805-3629cs
dc.identifier.doi10.13164/ma.2021.10en
dc.identifier.issn1805-3629
dc.identifier.urihttp://hdl.handle.net/11012/203930
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematikycs
dc.relation.ispartofMathematics for Applicationsen
dc.relation.urihttp://ma.fme.vutbr.cz/archiv/10_2/ma_10_2_gupta_et_al_final.pdfcs
dc.rights© Vysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematikycs
dc.rights.accessopenAccessen
dc.subjectη-Generalized vector variational-like inequality
dc.subjectKKM mapping; set-valued function
dc.subjecttopological vector space
dc.subjectcompactness
dc.titleTopological solutions of η-generalized vector variational-like inequality problemsen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentÚstav matematikycs
eprints.affiliatedInstitution.facultyFakulta strojního inženýrstvícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ma_10_2_gupta_et_al_final.pdf
Size:
666.91 KB
Format:
Adobe Portable Document Format
Description:
Collections