Multiclass Segmentation Of 3d Medical Data With Deep Learning

Loading...
Thumbnail Image

Date

Authors

Slunsky, Tomas

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií

ORCID

Abstract

This paper deals with multiclass image segmentation using convolutional neural networks. The theoretical part of paper focuses on image segmentation. There are basics principles of neural networks and image segmentation with more types of approaches. In practical part the Unet architecture is choosen and is described for image segmentation more. U-net was applied for medicine dataset which consist from 3D MRI of human brain. There is processing procedure which is more described for image proccesing of three-dimmensional data. There are also methods for data preproccessing which were applied for image multiclass segmentation. Final part of paper evaluates results which were achieved with choosen method.

Description

Citation

Proceedings I of the 26st Conference STUDENT EEICT 2020: General papers. s. 325-329. ISBN 978-80-214-5867-3
https://conf.feec.vutbr.cz/eeict/EEICT2020

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

DOI

Endorsement

Review

Supplemented By

Referenced By

Citace PRO