Text Document Plagiarism Detector

but.event.date27.04.2021cs
but.event.titleSTUDENT EEICT 2021cs
dc.contributor.authorKořínek, Lukáš
dc.date.accessioned2023-01-06T10:05:41Z
dc.date.available2023-01-06T10:05:41Z
dc.date.issued2021cs
dc.description.abstractThis paper provides an overview of diploma thesis concerned with research on availablemethods of plagiarism detection and then with design and implementation of such detector. Primaryaim is to detect plagiarism within academic works or theses issued at BUT. The detector uses sophisticatedpreprocessing algorithms to store documents in its own NoSQL corpus. Implementedcomparison algorithms are designed for parallel execution on graphical processing units and theycompare a single subject document against all other documents within the corpus in the shortest timepossible, enabling near real-time detection capabilities.en
dc.formattextcs
dc.format.extent73-76cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationProceedings II of the 27st Conference STUDENT EEICT 2021: Selected Papers. s. 73-76. ISBN 978-80-214-5943-4cs
dc.identifier.doi10.13164/eeict.2021.73
dc.identifier.isbn978-80-214-5943-4
dc.identifier.urihttp://hdl.handle.net/11012/200811
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.relation.ispartofProceedings II of the 27st Conference STUDENT EEICT 2021: Selected papersen
dc.relation.urihttps://conf.feec.vutbr.cz/eeict/index/pages/view/ke_stazenics
dc.rights© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.rights.accessopenAccessen
dc.subjecttext processingen
dc.subjectparallelizationen
dc.subjectCUDAen
dc.subjectNoSQLen
dc.subjectC++en
dc.titleText Document Plagiarism Detectoren
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentFakulta elektrotechniky a komunikačních technologiícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
73_EEICT_2021_2.pdf
Size:
714.08 KB
Format:
Adobe Portable Document Format
Description: