Gaussian Process Regression under Location Uncertainty using Monte Carlo Approximation

Loading...
Thumbnail Image

Date

Authors

Ptáček, Martin

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií

ORCID

Altmetrics

Abstract

Gaussian Process Regression (GPR) is a commonstatistical framework for spatial function estimation. While itsflexibility and availability of closed-form estimation solutionafter training are its advantages, it suffers on applicabilityconstraints in scenarios with uncertain training positions. Thispaper presents the derivation of the exact GPR operating onuncertain training positions along with approximation of theresulting terms using Monte Carlo (MC) sampling. This methodis then implemented in a simulation environment and shown toimprove the estimation quality over the standard GPR approachwith uncertain training positions.

Description

Citation

Proceedings II of the 29st Conference STUDENT EEICT 2023: Selected papers. s. 222-226. ISBN 978-80-214-6154-3
https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_2_v2.pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Citace PRO