A Spectral Emissivity Library of Spoil Substrates

Loading...
Thumbnail Image

Authors

Pivovarník, Marek
Pikl, Miroslav
Frouz, Jan
Zemek, František
Kopačková, Veronika
Notesco, Gila
Ben Dor, Eyal

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI

ORCID

Altmetrics

Abstract

Post-mining sites have a significant impact on surrounding ecosystems. Afforestation can restore these ecosystems, but its success and speed depends on the properties of the excavated spoil substrates. Thermal infrared remote sensing brings advantages to the mapping and classification of spoil substrates, resulting in the determination of its properties. A library of spoil substrates containing spectral emissivity and chemical properties can facilitate remote sensing activities. This study presents spectral library of spoil substrates’ emissivities extracted from brown coal mining sites in the Czech Republic. Extracted samples were homogenized by drying and sieving. Spectral emissivity of each sample was determined by spectral smoothing algorithm applied to data measured by a Fourier transform infrared (FTIR) spectrometer. A set of chemical parameters (pH, conductivity, Na, K, Al, Fe, loss on ignition and polyphenol content) and toxicity were determined for each sample as well. The spectral library presented in this paper also offers valuable information in the form of geographical coordinates for the locations where samples were obtained. Presented data are unique in nature and can serve many remote sensing activities in longwave infrared electromagnetic spectrum.
Post-mining sites have a significant impact on surrounding ecosystems. Afforestation can restore these ecosystems, but its success and speed depends on the properties of the excavated spoil substrates. Thermal infrared remote sensing brings advantages to the mapping and classification of spoil substrates, resulting in the determination of its properties. A library of spoil substrates containing spectral emissivity and chemical properties can facilitate remote sensing activities. This study presents spectral library of spoil substrates’ emissivities extracted from brown coal mining sites in the Czech Republic. Extracted samples were homogenized by drying and sieving. Spectral emissivity of each sample was determined by spectral smoothing algorithm applied to data measured by a Fourier transform infrared (FTIR) spectrometer. A set of chemical parameters (pH, conductivity, Na, K, Al, Fe, loss on ignition and polyphenol content) and toxicity were determined for each sample as well. The spectral library presented in this paper also offers valuable information in the form of geographical coordinates for the locations where samples were obtained. Presented data are unique in nature and can serve many remote sensing activities in longwave infrared electromagnetic spectrum.

Description

Citation

Data. 2016, vol. 1, issue 2, p. 1-7.
http://www.mdpi.com/2306-5729/1/2/12

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO